Nothing
test_that("Testing index generation", {
Sys.setenv("SITS_DOCUMENTATION_MODE" = "TRUE")
# Create a cube with two bands
s2_cube <- tryCatch(
{
sits_cube(
source = "AWS",
collection = "SENTINEL-2-L2A",
tiles = "20LKP",
bands = c("B05", "B8A", "CLOUD"),
start_date = "2019-07-18",
end_date = "2019-08-30",
progress = FALSE
)
},
error = function(e) {
return(NULL)
}
)
testthat::skip_if(
purrr::is_null(s2_cube),
"AWS is not accessible"
)
dir_images <- paste0(tempdir(), "/images/")
if (!dir.exists(dir_images)) {
suppressWarnings(dir.create(dir_images))
}
unlink(list.files(dir_images,
pattern = "\\.tif$",
full.names = TRUE
))
# Regularize cube
gc_cube <- suppressWarnings(
sits_regularize(
cube = s2_cube,
output_dir = dir_images,
res = 160,
period = "P1M",
multicores = 2,
progress = FALSE
)
)
# Calculate EVI
gc_cube_new <- sits_apply(gc_cube,
EVI = 2.5 * (B8A - B05) / (B8A + 2.4 * B05 + 1),
multicores = 1,
output_dir = dir_images,
progress = FALSE
)
# Test EVI
expect_true(all(sits_bands(gc_cube_new) %in% c("EVI", "B05", "B8A")))
timeline <- sits_timeline(gc_cube_new)
start_date <- timeline[1]
end_date <- timeline[length(timeline)]
expect_true(start_date == "2019-07-01")
expect_true(end_date == "2019-08-01")
file_info_b05 <- .fi(gc_cube_new) |> .fi_filter_bands(bands = "B05")
b05_band_1 <- .raster_open_rast(file_info_b05$path[[1]])
file_info_b8a <- .fi(gc_cube_new) |> .fi_filter_bands(bands = "B8A")
b8a_band_1 <- .raster_open_rast(file_info_b8a$path[[1]])
file_info_evi2 <- .fi(gc_cube_new) |> .fi_filter_bands(bands = "EVI")
evi2_band_1 <- .raster_open_rast(file_info_evi2$path[[1]])
b05_100 <- as.numeric(b05_band_1[100] / 10000)
b8a_100 <- as.numeric(b8a_band_1[100] / 10000)
evi2_100 <- as.numeric(evi2_band_1[100] / 10000)
evi2_calc_100 <- 2.5 * (b8a_100 - b05_100) / (b8a_100 + 2.4 * b05_100 + 1)
expect_equal(evi2_100, evi2_calc_100, tolerance = 0.001)
b05_150 <- as.numeric(b05_band_1[150] / 10000)
b8a_150 <- as.numeric(b8a_band_1[150] / 10000)
evi2_150 <- as.numeric(evi2_band_1[150] / 10000)
evi2_calc_150 <- 2.5 * (b8a_150 - b05_150) / (b8a_150 + 2.4 * b05_150 + 1)
expect_equal(evi2_150, evi2_calc_150, tolerance = 0.001)
class(gc_cube_new) <- "data.frame"
gc_cube_new <- sits_apply(gc_cube_new,
CIRE = B8A / B05 - 1,
normalized = FALSE,
multicores = 1,
output_dir = dir_images,
progress = FALSE
)
expect_true(all(sits_bands(gc_cube_new) %in%
c("CIRE", "EVI", "B05", "B8A")))
file_info_cire <- .fi(gc_cube_new) |> .fi_filter_bands(bands = "CIRE")
cire_band_1 <- .raster_open_rast(file_info_cire$path[[1]])
cire_100 <- as.numeric(cire_band_1[100])
cire_calc_100 <- b8a_100 / b05_100 - 1
expect_equal(cire_100, cire_calc_100, tolerance = 0.001)
cire_150 <- as.numeric(cire_band_1[150])
cire_calc_150 <- b8a_150 / b05_150 - 1
expect_equal(cire_150, cire_calc_150, tolerance = 0.001)
unlink(dir_images, recursive = TRUE)
})
test_that("Kernel functions", {
Sys.setenv("SITS_DOCUMENTATION_MODE" = "TRUE")
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir,
progress = FALSE
)
cube_median <- sits_apply(
data = cube,
output_dir = tempdir(),
NDVI_MEDIAN = w_median(NDVI),
window_size = 3,
memsize = 4,
multicores = 1,
progress = FALSE
)
rast <- .raster_open_rast(cube$file_info[[1]]$path[[1]])
v_obj <- matrix(.raster_get_values(rast), ncol = 255, byrow = TRUE)
rast_md <- .raster_open_rast(cube_median$file_info[[1]]$path[[2]])
v_obj_md <- matrix(.raster_get_values(rast_md), ncol = 255, byrow = TRUE)
median_1 <- median(as.vector(v_obj[20:22, 20:22]))
median_2 <- v_obj_md[21, 21]
expect_true(median_1 == median_2)
# Recovery
Sys.setenv("SITS_DOCUMENTATION_MODE" = "FALSE")
expect_message({
cube_median <- sits_apply(
data = cube,
output_dir = tempdir(),
NDVI_MEDIAN = w_median(NDVI),
window_size = 3,
memsize = 4,
multicores = 1,
progress = FALSE
)
})
Sys.setenv("SITS_DOCUMENTATION_MODE" = "TRUE")
cube_mean <- sits_apply(
data = cube,
output_dir = tempdir(),
NDVI_MEAN = w_mean(NDVI),
window_size = 3,
memsize = 4,
multicores = 2,
progress = FALSE
)
rast <- .raster_open_rast(cube[1, ]$file_info[[1]]$path[[1]])
v_obj <- matrix(.raster_get_values(rast), ncol = 255, byrow = TRUE)
rast_m <- .raster_open_rast(cube_mean$file_info[[1]]$path[[2]])
v_obj_m <- matrix(.raster_get_values(rast_m), ncol = 255, byrow = TRUE)
mean_1 <- as.integer(mean(as.vector(v_obj[4:6, 4:6])))
mean_2 <- v_obj_m[5, 5]
expect_true(mean_1 == mean_2)
cube_sd <- sits_apply(
data = cube,
output_dir = tempdir(),
NDVI_SD = w_sd(NDVI),
window_size = 3,
memsize = 4,
multicores = 2,
progress = FALSE
)
rast <- .raster_open_rast(cube[1, ]$file_info[[1]]$path[[1]])
v_obj <- matrix(.raster_get_values(rast), ncol = 255, byrow = TRUE)
rast_sd <- .raster_open_rast(cube_sd$file_info[[1]]$path[[2]])
v_obj_sd <- matrix(.raster_get_values(rast_sd), ncol = 255, byrow = TRUE)
sd_1 <- as.integer(sd(as.vector(v_obj[4:6, 4:6])))
sd_2 <- v_obj_sd[5, 5]
expect_true(sd_1 == sd_2)
cube_min <- sits_apply(
data = cube,
output_dir = tempdir(),
NDVI_MIN = w_min(NDVI),
window_size = 3,
memsize = 4,
multicores = 2,
progress = FALSE
)
rast <- .raster_open_rast(cube[1, ]$file_info[[1]]$path[[1]])
v_obj <- matrix(.raster_get_values(rast), ncol = 255, byrow = TRUE)
rast_min <- .raster_open_rast(cube_min$file_info[[1]]$path[[2]])
v_obj_min <- matrix(.raster_get_values(rast_min), ncol = 255, byrow = TRUE)
min_1 <- min(as.vector(v_obj[4:6, 4:6]))
min_2 <- v_obj_min[5, 5]
expect_true(min_1 == min_2)
cube_max <- sits_apply(
data = cube,
output_dir = tempdir(),
NDVI_MAX = w_max(NDVI),
window_size = 3,
memsize = 4,
multicores = 2,
progress = FALSE
)
rast <- .raster_open_rast(cube[1, ]$file_info[[1]]$path[[1]])
v_obj <- matrix(.raster_get_values(rast), ncol = 255, byrow = TRUE)
rast_max <- .raster_open_rast(cube_max$file_info[[1]]$path[[2]])
v_obj_max <- matrix(.raster_get_values(rast_max), ncol = 255, byrow = TRUE)
max_1 <- max(as.vector(v_obj[4:6, 4:6]))
max_2 <- v_obj_max[5, 5]
expect_true(max_1 == max_2)
tif_files <- grep("tif",
list.files(tempdir(), full.names = TRUE),
value = TRUE
)
success <- file.remove(tif_files)
})
test_that("Error", {
rfor_model <- sits_train(
samples_modis_ndvi,
sits_rfor(num_trees = 30)
)
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
sinop <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir,
progress = FALSE,
verbose = FALSE
)
expect_error(.check_bbox(sinop))
output_dir <- paste0(tempdir(), "/apply")
if (!dir.exists(output_dir)) {
dir.create(output_dir)
}
unlink(list.files(output_dir,
pattern = "\\.tif$",
full.names = TRUE
))
cube_median <- sits_apply(
data = sinop,
output_dir = tempdir(),
NDVI = w_median(NDVI),
window_size = 3,
memsize = 4,
multicores = 2,
progress = FALSE
)
sinop_probs <- sits_classify(
data = sinop,
ml_model = rfor_model,
output_dir = output_dir,
memsize = 4,
multicores = 1,
progress = FALSE
)
expect_error(sits_apply(sinop_probs))
unlink(output_dir, recursive = TRUE)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.