Nothing
#'@title Plots design diagnostics
#'
#'@description Plots design diagnostics
#'
#'@param skpr_output The output of either [gen_design()], [eval_design()], or [eval_design_mc()].
#'@param model Default `NULL`. Defaults to the model used in generating/evaluating
#'the design, augmented with 2-factor interactions. If specified, it will override the default
#'model used to generate/evaluate the design.
#'@param customcolors A vector of colors for customizing the appearance of the colormap
#'@param pow Default 2. The interaction level that the correlation map is showing.
#'@param custompar Default NULL. Custom parameters to pass to the `par` function for base R plotting.
#'@param standardize Default `TRUE`. Whether to standardize (scale to -1 and 1 and center) the continuous numeric columns. Not
#'standardizing the numeric columns can increase multi-collinearity (predictors that are correlated with other predictors in the model).
#'@param plot Default `TRUE`. If `FALSE`, this will return the correlation matrix.
#'@return Silently returns the correlation matrix with the proper row and column names.
#'@import graphics grDevices
#'@export
#'@examples
#'#We can pass either the output of gen_design or eval_design to plot_correlations
#'#in order to obtain the correlation map. Passing the output of eval_design is useful
#'#if you want to plot the correlation map from an externally generated design.
#'
#'#First generate the design:
#'
#'candidatelist = expand.grid(cost = c(15000, 20000), year = c("2001", "2002", "2003", "2004"),
#' type = c("SUV", "Sedan", "Hybrid"))
#'cardesign = gen_design(candidatelist, ~(cost+type+year)^2, 30)
#'plot_correlations(cardesign)
#'
#'#We can also increase the level of interactions that are shown by default.
#'
#'plot_correlations(cardesign, pow = 3)
#'
#'#You can also pass in a custom color map.
#'plot_correlations(cardesign, customcolors = c("blue", "grey", "red"))
#'plot_correlations(cardesign, customcolors = c("blue", "green", "yellow", "orange", "red"))
plot_correlations = function(
skpr_output,
model = NULL,
customcolors = NULL,
pow = 2,
custompar = NULL,
standardize = TRUE,
plot = TRUE
) {
#Remove skpr-generated REML blocking indicators if present
if (!is.null(attr(skpr_output, "splitanalyzable"))) {
if (attr(skpr_output, "splitanalyzable")) {
allattr = attributes(skpr_output)
remove_cols = which(colnames(skpr_output) %in% allattr$splitcolumns)
if (length(remove_cols) > 0) {
skpr_output = skpr_output[, -remove_cols, drop = FALSE]
allattr$names = allattr$names[-remove_cols]
}
attributes(skpr_output) = allattr
}
}
if (!is.null(attr(skpr_output, "splitcolumns"))) {
allattr = attributes(skpr_output)
skpr_output = skpr_output[,
!(colnames(skpr_output) %in% attr(skpr_output, "splitcolumns")),
drop = FALSE
]
allattr$names = allattr$names[
!allattr$names %in% attr(skpr_output, "splitcolumns")
]
attributes(skpr_output) = allattr
}
if (!is.null(attr(skpr_output, "augmented"))) {
if (attr(skpr_output, "augmented")) {
allattr = attributes(skpr_output)
skpr_output = skpr_output[,
!(colnames(skpr_output) %in% "Block1"),
drop = FALSE
]
allattr$names = allattr$names[!allattr$names %in% "Block1"]
attributes(skpr_output) = allattr
}
}
if (is.null(attr(skpr_output, "variance.matrix"))) {
skpr_output = eval_design(skpr_output, model, 0.2)
}
V = attr(skpr_output, "variance.matrix")
#Maybe add candidate set to the attributes,
if (!is.null(attr(skpr_output, "runmatrix"))) {
design = attr(skpr_output, "runmatrix")
} else {
design = skpr_output
}
if (is.null(model)) {
variables = paste0("`", colnames(design), "`")
linearterms = paste(variables, collapse = " + ")
linearmodel = paste0(c("~", linearterms), collapse = "")
model1 = as.formula(paste(
c(
linearmodel,
as.character(aliasmodel(as.formula(linearmodel), power = pow)[2])
),
collapse = " + "
))
if (!is.null(attr(skpr_output, "generating_model"))) {
modelfactors = colnames(attr(
terms.formula(attr(skpr_output, "generating_model"), data = design),
"factors"
))
quadmodelfactors = colnames(attr(
terms.formula(model1, "factors", data = design),
"factors"
))
otherterms = modelfactors[!modelfactors %in% quadmodelfactors]
model = as.formula(paste(c(model1, otherterms), collapse = " + "))
} else {
model = model1
}
} else {
model1 = model
}
presetcontrasts = list()
contrast_info = generate_contrast_list(
design,
presetcontrasts,
contr.simplex
)
contrastslist_cormat = contrast_info$contrastslist_cormat
#------Normalize/Center numeric columns ------#
if (standardize) {
design = normalize_design(design)
}
#Main effects model
mm_main = model.matrix(~., design, contrasts.arg = contrastslist_cormat)
#All interactions included
mm = model.matrix(model1, design, contrasts.arg = contrastslist_cormat)
X = mm_main[, -1, drop = FALSE]
int_nms = setdiff(colnames(mm), colnames(mm_main)) # just the interactions
Z = mm[, int_nms, drop = FALSE]
W = solve(V)
XZ = cbind(X, Z)
G = crossprod(XZ, W %*% XZ)
C = cov2cor(G)
cormat = abs(C)
if (!plot) {
return(cormat)
}
if (is.null(customcolors)) {
imagecolors = viridis::viridis(101)
} else {
imagecolors = colorRampPalette(customcolors)(101)
}
if (!is.null(custompar)) {
warning(
"`custompar` is no longer supported; adjust the returned ggplot object instead."
)
}
labels = colnames(mm)[-1]
plot_matrix = t(cormat[ncol(cormat):1, , drop = FALSE])
plot_df = data.frame(
x = rep(labels, each = length(labels)),
y = rep(rev(labels), times = length(labels)),
value = as.vector(plot_matrix)
)
plot_obj = ggplot2::ggplot(
plot_df,
ggplot2::aes(
x = factor(x, levels = labels),
y = factor(y, levels = rev(labels)),
fill = value
)
) +
ggplot2::geom_tile(color = NA) +
ggplot2::scale_x_discrete(position = "top") +
ggplot2::scale_y_discrete() +
ggplot2::scale_fill_gradientn(
colours = imagecolors,
limits = c(0, 1),
name = "|r|"
) +
ggplot2::coord_fixed() +
ggplot2::theme_minimal() +
ggplot2::theme(
axis.title = ggplot2::element_blank(),
panel.grid = ggplot2::element_blank(),
axis.text.x = ggplot2::element_text(
angle = 90,
vjust = 0.5,
hjust = 0,
size = 8
),
axis.text.y = ggplot2::element_text(size = 8)
)
print(plot_obj)
results = t(cormat[ncol(cormat):1, , drop = FALSE])
colnames(results) = rev(colnames(mm)[-1])
rownames(results) = colnames(mm)[-1]
invisible(results)
}
globalVariables(c("x", "y"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.