Nothing
# This unit test script makes sure that a trivially simple slendr model gives exactly the same
# result (i.e. tree sequence tables) after loading than a pure SLiM script
skip_if(!is_slendr_env_present())
init_env(quiet = TRUE)
# total length of the test simulation run
T <- 10000
# number of individuals in a populations
N <- 2000
# run a slendr simulation -------------------------------------------------
pop <- population("pop", time = 1, N = N)
model <- compile_model(pop, generation_time = 1, direction = "forward", simulation_length = T)
ts1 <- slim(model, method = "batch", sequence_length = 1,
recombination_rate = 0, random_seed = 42, verbose = FALSE)
# run a pure SLiM version of the same model -------------------------------
simulate_slim_ts <- function(N, T, output, script_file , verbose = FALSE) {
script_file <- normalizePath(tempfile(), winslash = "/", mustWork = FALSE)
output <- normalizePath(tempfile(), winslash = "/", mustWork = FALSE)
writeLines(sprintf('initialize() {
setSeed(42);
initializeSLiMOptions(keepPedigrees = T);
initializeTreeSeq(retainCoalescentOnly=T);
initializeMutationType(0, 0.5, "f", 0);
initializeGenomicElementType(1, m0, 1);
initializeGenomicElement(g1, 0, 0);
initializeMutationRate(0);
initializeRecombinationRate(0);
}
1 late() {
sim.addSubpop("p0", %d);
}
%s late() {
inds = sample(sim.subpopulations.individuals, %s);
sim.treeSeqRememberIndividuals(inds, permanent = T);
}
1: late() {
sim.treeSeqRememberIndividuals(sim.subpopulations.individuals, permanent = F);
}
%s late() {
sim.treeSeqOutput("%s");
catn(community.tick + "finished");
}
2: fitnessEffect() /* Compute fitness of individuals */ {
return 1.0;
interaction = community.allInteractionTypes[2 * subpop.id]; // this must be here otherwise the test breaks
}
', N, T + 1, N, T + 1, output), script_file)
if (Sys.info()["sysname"] == "Windows")
binary <- "slim.exe"
else
binary <- "slim"
out <- system2(binary, script_file, stdout = TRUE)
if (verbose) cat(paste(out, collapse = "\n"))
ts_load(output)
}
ts2 <- simulate_slim_ts(N, T, verbose = FALSE)
# load tree sequences, extract tables -------------------------------------
shared_cols <- c("node_id", "time_tskit", "remembered", "retained", "alive", "pedigree_id", "pop_id", "ind_id")
table1 <- ts_nodes(ts1) %>% dplyr::arrange(pedigree_id) %>% .[, shared_cols] %>% as.data.frame()
table2 <- ts_nodes(ts2) %>% dplyr::arrange(pedigree_id) %>% .[, shared_cols] %>% as.data.frame()
test_that("pure SLiM and slendr versions of the same model give the same node/ind table", {
expect_true(all(table1 == table2))
})
test_that("pure SLiM and slendr versions of the same model give the same phylo object", {
t1 <- ts_recapitate(ts1, Ne = N, recombination_rate = 0, random_seed = 42) %>% ts_simplify() %>% ts_phylo(0, quiet = TRUE)
t2 <- ts_recapitate(ts1, Ne = N, recombination_rate = 0, random_seed = 42) %>% ts_simplify() %>% ts_phylo(0, quiet = TRUE)
# plot(t1)
# plot(t2)
expect_equal(t1$edge, t2$edge)
expect_equal(t1$edge.length, t2$edge.length)
expect_equal(t1$node.label, t2$node.label)
expect_equal(t1$Nnode, t2$Nnode)
})
# simplification tests (after introducing constant tracking of names of sampled individuals)
test_that("simplification on pure SLiM tree sequence retains the correct data", {
tmp_small <- tempfile()
suppressWarnings(ts_small <- ts_simplify(ts2, simplify_to = c(0, 42, 100, 256)))
ts_save(ts_small, tmp_small)
ts_small_loaded <- ts_load(tmp_small)
expect_equal(ts_nodes(ts_small_loaded) %>% dplyr::filter(sampled) %>% nrow, 4)
# for a mysterious reason not worth investigating right now, the last two
# columns of ts_nodes (ind_id, pop_id) are flipped between ts_small and ts_small_loaded,
# so let's compare the ts_nodes contents by explicitly ordered columns
cols <- c("pop", "node_id", "time", "time_tskit", "sampled", "remembered",
"retained", "alive", "pedigree_id", "ind_id", "pop_id")
expect_equal(ts_nodes(ts_small)[, cols], ts_nodes(ts_small_loaded)[, cols])
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.