Nothing
# run this script immediately after "bissel2"
# which produces the nonparametric regression estimate
with(bissell, {
plot(Length, Flaws, xlim=c(0,1000), pch="o")
Y <- Flaws[order(Length)]
X <- sort(Length)
h <- 100
beta <- sum(Y)/sum(X)
abline(0,beta,col=2)
dev<-function(y,mu){
d<-(mu-y+y*log(y/mu))
d[y==0] <- mu[y==0]
return(2*sum(d))
}
W<-sm.weight(X, X, h, options=list(poly.index=0))
glm.fitted<- beta*X
p.boot <- 0
denom <-(W %*% X)
sm.fitted <- ((W %*% Y)/denom)*X
disp <- dev(Y,sm.fitted)/(length(Y)-1)
ts.orig <- (dev(Y,glm.fitted)-dev(Y,sm.fitted))/disp
cat("Dispersion parameter = ", disp,"\n")
cat("Test statistic = ", ts.orig,"\n")
nboot <- 500
cat("Bootstrap samples: ")
for (i in 1:nboot) {
yboot<-rpois(length(glm.fitted),glm.fitted)
sm.fitted <- ((W %*% yboot)/denom)*X
disp <- dev(yboot,sm.fitted)/(length(yboot)-1)
ts.boot <- (dev(yboot,glm.fitted)-dev(yboot,sm.fitted))/disp
if (ts.boot > ts.orig) p.boot <- p.boot + 1
lines(X, sm.fitted, lty=2,col=6)
if((i %% 100)==0) {cat(i);cat(" ")}
}
cat("\n")
lines(x,sm.beta*x,col=1)
cat("Observed significance = ", p.boot/nboot,"\n")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.