Nothing
#-------------------------------------#
# functions for negative analysis #
#-------------------------------------#
## helper functions for a-priori
scale01 <- function(x, l, u) {
(x - l) / (u - l)
}
## helper function for beta-binom a-priori
bb_p0 <- function(a, b, N) {
extraDistr::dbbinom(0, N, a, b)
}
bb_p1 <- function(a, b, N) {
1 - bb_p0(a, b, N)
}
bb_mu <- function(a, b, N) {
N * a / (a + b)
}
bb_muc <- function(a, b, N) { # mean conditional on number > 0
p0 <- bb_p0(a, b, N)
(N * a / (a + b)) / (1 - p0)
}
bb_pi <- function(a, b, N) {
scale01(bb_muc(a, b, N), 1, (N + 1) / 2)
}
## Methods for finding beta binom parameters
## optimizer for a-priori
rss <- function(x, N, p1, pi, w = c(1, 1)) {
y <- c(bb_p1(x[1], x[2], N),
bb_pi(x[1], x[2], N))
crossprod(w * (y - c(p1, pi)))
}
# w: optimization weights
findparsBeta <- function(N, p1, pi, w = c(1,1)) {
l <- 1; u <- (N + 1) / 2
or <- optim(c(0.5, 2), rss, N = N, p1 = p1, pi = pi, w = w, method = "L-BFGS-B",
lower = c(0.001, 1.000), upper = c(1, Inf))
a <- or$par[1]; b <- or$par[2]
muc <- l + pi * (u - l)
##cat(" Target | achieved\n")######
##cat("p1: ", p1, "|", bb_p1(a, b, N), "\n")######
##cat("pi: ", pi, "|", bb_pi(a, b, N), "\n")######
##cat("mu_c:", muc, "|", bb_muc(a, b, N), "\n")######
return(list(a = a, b = b))
}
#' Generate data extended
#'
#' Creates a dataframe suitable as input for \code{\link{calculate_likelihood_negative_tests}}.
#'
#' @param M The size of the group without infected, default is twenty.
#' @param d A matrix with the test dates, default is matrix(data = 1, nrow = 1, ncol = 2).
#' @param S A vector with the sizes of the subgroups, default is c(12).
#' @return The dataframe.
generate_data_extended <- function(M = 20, # complete group size
d = matrix(data = 1, nrow = 1, ncol = 2), # testDates
S = c(12) # subgroup sizes (subgroup defined by test timepoint )
) {
# G <- nrow(d) # number of subgroups (excluding untested, untested size is M-N)
N <- sum(S) # number of tested alltogether
stopifnot(length(S) %in% c(1, nrow(d)))
d <- data.frame(id = 1:M,
tested = c(rep(TRUE, N), rep(FALSE, M - N)),
result = c(rep(FALSE, N), rep(NA, M - N)),
testNumbers = c(rep(d[, 1], times = S), rep(NA, M - N)),
group = c(rep(1:length(S), times = S), rep(length(S) + 1, M - N)))
return(d)
}
#' One more primary a priori probability
#'
#' Calculates the a priori probability y for one primary case more
#' by using the current prior distribution and the prior distribution of
#' one single primary case.
#'
#' @param yCurrent The current prior distribution.
#' @param y1 The prior distribution of one single primary case.
#' @return The a priori probability y.
p_onePrimaryMore <- function(yCurrent, y1) {
k <- 0:(length(y1) - 1)
y2 <- rep(0, length(y1))
for(k1 in k) {
p1 <- yCurrent[k1 + 1]
for(k2 in k) {
p2 <- y1[k2 + 1]
for(kNew in max(0,k2 - k1) : min(k2, length(y1) - 1 - k1)) {
pDraw <- dhyper(kNew, length(y1) - 1 - k1, k1, k2)
y2[k1 + kNew + 1] <- y2[k1 + kNew + 1] + p1 * p2 * pDraw
}
}
}
return(y2)
}
#' Likelihood K
#'
#' Calculates the probability that zero positive tests are observed given K
#' of the group are infected.
#'
#' @param infected_group_size Number of infected Persons in the group.
#' @param information_data Matrix with columns person ID, tested (T/F), result(F/NA), testNumbers, groupNumber
#' @param test_infos Matrix with column number of test days and a column
#' for each test with the testday relative to event date, the rows are the groups.
#' @param test_types Matrix with test day (columns) of each group (rows) and whe informations about test types.
#' @param info Dataframe with the day specific information about sensitivity and specificity.
#' @param combination_infected Matrix of all possible combinations how K infected are distributed among subgroups.
#' @param number_group_peoples Vector with the number of people per group.
#' @param number_subgroups Number of subgroups including group of untested (if existent).
#' @return The probability.
calculate_likelihood_negative_tests_k <- function(infected_group_size,
information_data,
test_infos,
test_types,
info,
combination_infected,
number_group_peoples,
number_subgroups) {
G <- max(information_data$group[information_data$tested]) # number of subgroups among tested with diff timepoints
combination_infected <- combination_infected[which(combination_infected$S == infected_group_size), ] # only allow those combinations such all overall number of infected is == K
## ?extraDistr::dmvhyper # needed urn model prob dist: multivariate hypergeometric distribution
## prob that x1,...,xG people are infected in group 1,...,G given that K are infected overall:
combination_infected$pmvhy <- extraDistr::dmvhyper(x = combination_infected[, 1:number_subgroups],
n = number_group_peoples,
k = infected_group_size)
## prep final calc:
fnr <- c()
# extension to groups with several test
for (i in 1:G) {
testDays <- test_infos[i, 2:ncol(test_infos)]
testProbs <- c()
for(j in 1:test_infos[i,1])
{
# if(test_types[i,j] == "PCR")
# {
# testProbs[j] <- 1 - info$sePCR[info$t %in% testDays[j]]
# }
# if(test_types[i,j] == "Antigen")
# {
# testProbs[j] <- 1 - info$seAntigen[info$t %in% testDays[j]]
# }
if(test_types[i,j] %in% colnames(info))
{
testProbs[j] <- 1 - dplyr::pull(info, test_types[i,j])[info$t %in% testDays[j]]
}
}
fnr[i] <- prod(testProbs)
}
FNR <- matrix(fnr, nrow = nrow(combination_infected), ncol = G, byrow = TRUE) # as matrix
## prob that 0 people have pos test result given that x1,...,xG (row of GR) people are infected in group 1,...,G:
combination_infected$p0 <- exp(rowSums(log(FNR^(combination_infected[, 1:G])))) # prob that all tests are negative (product: test results are independent)
return(sum(combination_infected$pmvhy * combination_infected$p0)) # add up all paths + weight by pmvhy
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.