Nothing
## ----setup, echo=FALSE, results='hide', warning=FALSE---------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
message = FALSE,
warning = FALSE,
fig.align = 'center',
fig.width = 8,
fig.height = 6,
dpi = 36,
tidy = FALSE,
verbose = FALSE,
# run when NASIS is defined or when R_SOILDB_SKIP_LONG_EXAMPLES is FALSE
eval = isTRUE(try(local_NASIS_defined(), silent = TRUE)) ||
!as.logical(Sys.getenv("R_SOILDB_SKIP_LONG_EXAMPLES", unset = "TRUE"))
)
options(width = 100, stringsAsFactors = FALSE)
## ----eval = FALSE---------------------------------------------------------------------------------
# install.packages(c('soilDB', 'terra', 'sf'))
## ----eval = FALSE---------------------------------------------------------------------------------
# install.packages(c('soilDB', 'terra', 'sf'),
# repos = c('https://ncss-tech.r-universe.dev',
# 'https://rspatial.r-universe.dev',
# 'https://r-spatial.r-universe.dev')
# )
## ----eval = FALSE---------------------------------------------------------------------------------
# # select gSSURGO grid, 30m resolution
# x <- mukey.wcs(aoi = aoi, db = 'gssurgo', ...)
#
# # select gNATSGO grid, 30m resolution
# x <- mukey.wcs(aoi = aoi, db = 'gnatsgo', ...)
#
# # select RSS grid, 10m resolution
# x <- mukey.wcs(aoi = aoi, db = 'RSS', ...)
#
# # select STATSGO2 grid, 300m resolution
# x <- mukey.wcs(aoi = aoi, db = 'statsgo', ...)
## ----eval = FALSE---------------------------------------------------------------------------------
# # select various ISSR-800 grids, details below
# x <- ISSR800.wcs(aoi = aoi, var = 'paws')
## ----fig.width = 5, fig.height = 5----------------------------------------------------------------
library(terra)
library(soilDB)
# example point, WGS84 coordinates
p <- vect(
data.frame(
lon = -118.55639,
lat = 36.52578
),
crs = "EPSG:4326"
)
# 1000m buffer applied to WGS84 coordinate
# radius defined in meters
b <- buffer(p, 1000)
# query WCS
# result is in EPSG:5070
mu <- mukey.wcs(b, db = 'gSSURGO')
# inspect
plot(
mu,
legend = FALSE,
axes = FALSE,
main = paste0(metags(mu)$value, collapse = " - ")
)
# add buffer, after transforming to mukey grid CRS
plot(project(b, "EPSG:5070"), add = TRUE)
# add original point, after transforming to mukey grid CRS
plot(project(p, "EPSG:5070"), add = TRUE, pch = 16)
## ----fig.width = 8, fig.height = 7----------------------------------------------------------------
library(sf)
library(soilDB)
library(terra)
# paste the five coordinates comprising the BBOX polygon here
bb <- '-118.6609 36.4820,-118.6609 36.5972,-118.3979 36.5972,-118.3979 36.4820,-118.6609 36.4820'
# convert WKT string -> sfc geometry
wkt <- sprintf('POLYGON((%s))', bb)
x <- st_as_sfc(wkt)
# set coordinate reference system as GCS/WGS84
st_crs(x) <- 4326
# query WCS
mu <- mukey.wcs(x, db = 'gSSURGO')
# inspect
plot(
mu,
legend = FALSE,
axes = FALSE,
main = paste0(metags(mu)$value, collapse = " - ")
)
# add original BBOX, after transforming to mukey grid CRS
plot(st_transform(x, 5070), add = TRUE)
## -------------------------------------------------------------------------------------------------
# make a bounding box and assign a CRS (4326: GCS, WGS84)
a <- st_bbox(
c(xmin = -114.16, xmax = -114.08, ymin = 47.65, ymax = 47.68),
crs = st_crs(4326)
)
# fetch gSSURGO map unit keys at native resolution (30m)
mu <- mukey.wcs(aoi = a, db = 'gssurgo')
# check:
print(mu)
plot(
mu,
main = 'gSSURGO map unit keys',
sub = 'Albers Equal Area Projection',
axes = FALSE,
legend = FALSE
)
## -------------------------------------------------------------------------------------------------
# because mu is a SpatRaster, result is a SpatVector object (GCS WGS84)
p <- SDA_spatialQuery(mu, what = 'mupolygon', geomIntersection = TRUE)
## -------------------------------------------------------------------------------------------------
p <- project(p, crs(mu))
## ----fig.width = 8, fig.height = 7----------------------------------------------------------------
plot(mu,
main = 'gSSURGO Grid (WCS)\nSSURGO Polygons (SDA)',
axes = FALSE,
legend = FALSE)
plot(p, add = TRUE, border = 'white')
mtext('CONUS Albers Equal Area Projection (EPSG:5070)', side = 1, line = 1)
## -------------------------------------------------------------------------------------------------
# make a bounding box (in California) and assign a CRS (GCS WGS84 / EPSG:4326)
a.CA <- st_bbox(c(
xmin = -121,
xmax = -120,
ymin = 37,
ymax = 38
), crs = st_crs(4326))
# fetch gSSURGO map unit keys at ~800m
# nearest-neighbor resampling = this is a "preview"
# result is a SpatRaster object
x.800 <- mukey.wcs(aoi = a.CA, db = 'gssurgo', res = 800)
plot(
x.800,
main = 'A Preview of gSSURGO Map Unit Keys',
sub = 'Albers Equal Area Projection (800m)\nnearest-neighbor resampling',
axes = FALSE,
legend = FALSE
)
## ----fig.width=8, fig.height=6--------------------------------------------------------------------
# Coweeta Hydrologic Laboratory extent; specified in EPSG:5070
a <- st_bbox(
c(xmin = 1129000, xmax = 1135000, ymin = 1403000, ymax = 1411000),
crs = st_crs(5070)
)
# convert boundary sf polygon
a <- st_as_sfc(a)
# gSSURGO grid: 30m resolution
(x <- mukey.wcs(a, db = 'gSSURGO', res = 30))
# gNATSGO grid: 30m resolution
(y <- mukey.wcs(a, db = 'gNATSGO', res = 30))
# RSS grid: 10m resolution
(z <- mukey.wcs(a, db = 'RSS', res = 10))
# graphical comparison
par(mfcol = c(1, 3))
# gSSURGO
plot(
x,
axes = FALSE,
legend = FALSE,
main = paste0(metags(x)$value, collapse = " - ")
)
plot(a, add = TRUE)
# gNATSGO
plot(
y,
axes = FALSE,
legend = FALSE,
main = paste0(metags(y)$value, collapse = " - ")
)
plot(a, add = TRUE)
# RSS
plot(
z,
axes = FALSE,
legend = FALSE,
main = paste0(metags(z)$value, collapse = " - "),
ext = x
)
plot(a, add = TRUE)
## ----fig.width=8, fig.height=6--------------------------------------------------------------------
(statsgo <- mukey.wcs(a, db = 'statsgo', res = 300))
# graphical comparison
par(mfcol = c(1, 2))
# gSSURGO
plot(
x,
axes = FALSE,
legend = FALSE,
main = paste0(metags(mu)$value, collapse = " - ")
)
# STATSGO
plot(
statsgo,
axes = FALSE,
legend = FALSE,
main = paste0(metags(statsgo)$value, collapse = " - ")
)
## ----fig.width = 6.5, fig.height=5----------------------------------------------------------------
# paste your BBOX text here
bb <- '-159.7426 21.9059,-159.7426 22.0457,-159.4913 22.0457,-159.4913 21.9059,-159.7426 21.9059'
# convert WKT string -> sfc geometry
wkt <- sprintf('POLYGON((%s))', bb)
x <- st_as_sfc(wkt, crs = 4326)
# query WCS
mu <- mukey.wcs(x, db = 'hi_ssurgo')
# make NA (the ocean) blue
plot(
mu,
legend = FALSE,
axes = FALSE,
main = paste0(metags(mu)$value, collapse = " - "),
colNA = 'royalblue'
)
## ----eval=FALSE, include=FALSE--------------------------------------------------------------------
# # # check mu names
# # .is <- format_SQL_in_statement(cats(mu)[[1]]$mukey)
# # .sql <- sprintf("SELECT mukey, muname FROM mapunit WHERE mukey IN %s", .is)
# # knitr::kable(SDA_query(.sql))
## ----fig.width = 6.5, fig.height=5----------------------------------------------------------------
# paste your BBOX text here
bb <- '-65.7741 18.1711,-65.7741 18.3143,-65.5228 18.3143,-65.5228 18.1711,-65.7741 18.1711'
# convert WKT string -> sfc geometry
wkt <- sprintf('POLYGON((%s))', bb)
x <- st_as_sfc(wkt, crs = 4326)
# query WCS
mu <- mukey.wcs(x, db = 'pr_ssurgo')
# make missing data (NA; the ocean) blue
plot(
mu,
legend = FALSE,
axes = FALSE,
main = paste0(metags(mu)$value, collapse = " - "),
colNA = 'royalblue'
)
## ----eval=FALSE, include=FALSE--------------------------------------------------------------------
# # # check mu names
# # .is <- format_SQL_in_statement(cats(mu)[[1]]$mukey)
# # .sql <- sprintf("SELECT mukey, muname FROM mapunit WHERE mukey IN %s", .is)
# # knitr::kable(SDA_query(.sql))
## -------------------------------------------------------------------------------------------------
# make a bounding box and assign a CRS (4326: GCS, WGS84)
a <- st_bbox(
c(xmin = -114.16, xmax = -114.08, ymin = 47.65, ymax = 47.68),
crs = st_crs(4326)
)
# convert bbox to sf geometry
a <- st_as_sfc(a)
# fetch gSSURGO map unit keys at native resolution (~30m)
mu <- mukey.wcs(aoi = a, db = 'gssurgo')
## ----fig.width=8----------------------------------------------------------------------------------
# copy example grid
mu2 <- mu
# extract raster attribute table for thematic mapping
(rat <- cats(mu2)[[1]])
# optionally use convenience function:
# * returns all fields from muaggatt table
# * along with map unit name
# tab <- get_SDA_muaggatt(mukeys = as.numeric(rat$mukey), query_string = TRUE)
.sql <- paste0(
"SELECT mukey, aws050wta, aws0100wta FROM muaggatt WHERE mukey IN ",
format_SQL_in_statement(as.numeric(rat$mukey))
)
# run query, result is a data.frame
tab <- SDA_query(.sql)
# check
head(tab)
# set raster categories
levels(mu2) <- tab
# convert grid + RAT -> stack of property grids
aws <- catalyze(mu2)
# plot, set a common range [0, 20] for both layers
plot(
aws,
axes = FALSE,
cex.main = 0.7,
main = c(
'Plant Available Water Storage (cm)\nWeighted Mean over Components, 0-50cm',
'Plant Available Water Storage (cm)\nWeighted Mean over Components, 0-100cm'
),
range = c(0, 20)
)
## -------------------------------------------------------------------------------------------------
# copy example grid
mu2 <- mu
# extract RAT for thematic mapping
rat <- cats(mu2)[[1]]
rules <- c('ENG - Construction Materials; Roadfill',
'AWM - Irrigation Disposal of Wastewater')
tab <- get_SDA_interpretation(
rulename = rules,
method = "Weighted Average",
mukeys = as.numeric(rat$mukey)
)
# check
head(tab)
# set ordered factor levels (for nice label/legend order)
tab$class_ENGConstructionMaterialsRoadfill <- factor(
tab$class_ENGConstructionMaterialsRoadfill,
levels = c(
'Not suited',
'Poorly suited',
'Moderately suited',
'Moderately well suited',
'Well suited',
'Not Rated'
),
ordered = TRUE
)
par(mar = c(4, 12, 3, 3))
boxplot(
rating_ENGConstructionMaterialsRoadfill ~ class_ENGConstructionMaterialsRoadfill,
cex.main = 0.7,
main = 'ENG - Construction Materials; Roadfill',
ylab = "",
data = tab,
horizontal = TRUE, # fuzzy ratings on X axis
las = 1 # rotate axis labels 90 degrees
)
## ----fig.width=8----------------------------------------------------------------------------------
vars <- c(
'rating_ENGConstructionMaterialsRoadfill',
'rating_AWMIrrigationDisposalofWastewater'
)
# set raster categories
levels(mu2) <- tab[, c('mukey', vars)]
rating <- catalyze(mu2)
# inspect
plot(
rating,
axes = FALSE,
cex.main = 0.7,
main = c(
'Construction Materials; Roadfill\nWeighted Mean over Components',
'Irrigation Disposal of Wastewater\nWeighted Mean over Components'
)
)
## ----fig.width = 8, fig.height = 6----------------------------------------------------------------
# copy example grid
mu2 <- mu
# extract RAT for thematic mapping
rat <- cats(mu2)[[1]]
tab <- get_SDA_property(property = 'Corrosion of Steel',
method = 'DOMINANT CONDITION',
mukeys = as.integer(rat$mukey),
miscellaneous_areas = TRUE)
# get soil data viewer standard colors for corsteel
cols <- get_SDV_legend_elements("attributecolumnname = 'corsteel'")
# set raster categories
levels(mu2) <- tab[, c('mukey', 'corsteel')]
# set active category
activeCat(mu2) <- 'corsteel'
# plot
plot(
mu2,
col = cols$hex[na.omit(match(unique(tab$corsteel), cols$label))],
axes = FALSE,
legend = "topleft"
)
## -------------------------------------------------------------------------------------------------
# https://casoilresource.lawr.ucdavis.edu/gmap/?loc=36.57666,-96.70175,z14
# make a bounding box and assign a CRS (4326: GCS, WGS84)
a <- st_bbox(
c(xmin = -96.7696, xmax = -96.6477,
ymin = 36.5477, ymax = 36.6139),
crs = st_crs(4326)
)
# fetch gSSURGO map unit keys at native resolution (~30m)
mu <- mukey.wcs(aoi = a, db = 'gssurgo')
plot(
mu,
legend = FALSE,
axes = FALSE,
cex.main = 0.7,
main = 'gSSURGO Map Unit Key Grid'
)
## ----fig.width = 8, fig.height = 6----------------------------------------------------------------
# copy example grid
mu2 <- mu
# extract RAT for thematic mapping
rat <- cats(mu2)[[1]]
# simplified parent material group name
tab <- get_SDA_pmgroupname(mukeys = as.integer(rat$mukey),
miscellaneous_areas = TRUE)
# set raster categories
levels(mu2) <- tab[, c('mukey', 'pmgroupname')]
# set active category
activeCat(mu2) <- 'pmgroupname'
plot(mu2, legend = "topleft", axes = FALSE)
## ----fig.width = 8, fig.height = 6----------------------------------------------------------------
# copy example grid
mu2 <- mu
# extract RAT for thematic mapping
rat <- cats(mu2)[[1]]
# simplified parent material group name
tab <- get_SDA_hydric(mukeys = as.integer(rat$mukey))
levels(mu2) <- tab[, c('mukey', 'HYDRIC_RATING')]
# set active category
activeCat(mu2) <- 'HYDRIC_RATING'
plot(mu2, legend = "topleft", axes = FALSE)
## -------------------------------------------------------------------------------------------------
# extract RAT for thematic mapping
rat <- cats(mu)[[1]]
# variables of interest
vars <- c("dbthirdbar_r", "awc_r", "ph1to1h2o_r")
# get / aggregate specific horizon-level properties from SDA
# be sure to see the manual page for this function
tab <- get_SDA_property(property = vars,
method = "Dominant Component (Numeric)",
mukeys = as.integer(rat$mukey),
top_depth = 0,
bottom_depth = 25)
# check
head(tab)
# convert areasymbol into a factor easy plotting later
tab$areasymbol <- factor(tab$areasymbol)
# set raster categories
levels(mu) <- tab[, c('mukey', vars)]
# list variables in the RAT
names(cats(mu)[[1]])
# convert categories associated with keys to values
mu2 <- catalyze(mu)
## ----fig.width = 6, fig.height = 4----------------------------------------------------------------
plot(mu2$awc_r)
## -------------------------------------------------------------------------------------------------
plot(mu2[['dbthirdbar_r']], cex.main = 0.7,
main = '1/3 Bar Bulk Density (g/cm^3)\nDominant Component\n0-25cm')
plot(mu2[['awc_r']], cex.main = 0.7,
main = 'AWC (cm/cm)\nDominant Component\n0-25cm')
plot(mu2[['ph1to1h2o_r']], cex.main = 0.7,
main = 'pH 1:1 H2O\nDominant Component\n0-25cm')
## -------------------------------------------------------------------------------------------------
# extract a BBOX like this from SoilWeb by pressing "b"
bb <- '-91.6853 36.4617,-91.6853 36.5281,-91.5475 36.5281,-91.5475 36.4617,-91.6853 36.4617'
wkt <- sprintf('POLYGON((%s))', bb)
# init sf object from WKT
x <- st_as_sfc(wkt, crs = 4326)
# get gSSURGO grid here
mu <- mukey.wcs(aoi = x, db = 'gssurgo')
# note SSA boundary
plot(mu, legend = FALSE, axes = FALSE)
## ----fig.width = 8, fig.height = 6----------------------------------------------------------------
# extract RAT for thematic mapping
rat <- cats(mu)[[1]]
# variables of interest
vars <- c("sandtotal_r", "silttotal_r", "claytotal_r")
# get thematic data from SDA
# dominant component
# depth-weighted average
# sand, silt, clay (RV)
tab <- get_SDA_property(property = vars,
method = "Dominant Component (Numeric)",
mukeys = as.integer(rat$mukey),
top_depth = 25,
bottom_depth = 50)
# check
head(tab)
# set raster categories
levels(mu) <- tab[, c('mukey', vars)]
# convert mukey grid + RAT -> stack of numerical grids
# retaining only sand, silt, clay via [[vars]]
ssc <- catalyze(mu)
# create a copy of the grid
texture.class <- ssc[[1]]
names(texture.class) <- 'soil.texture'
# assign soil texture classes for the fine earth fraction
# using sand and clay percentages
values(texture.class) <- aqp::ssc_to_texcl(
sand = values(ssc[['sandtotal_r']]),
clay = values(ssc[['claytotal_r']]),
droplevels = FALSE
)
r <- c(ssc, texture.class)
# graphical check
plot(
r,
cex.main = 0.7,
main = paste0(names(r), " - 25-50cm\nDominant Component")
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.