Nothing
overallPlot <- function(x, param, density = TRUE, ...) {
n.post <- x$n.post
n.chains <- x$n.chains
curr.samples <- vector(mode = 'list', length = n.chains)
indx <- 1:n.post
if (param == 'beta.comm') {
if (class(x) %in% c('abund', 'spAbund', 'svcAbund', 'NMix',
'spNMix', 'DS', 'spDS')) {
stop("beta.comm is not a parameter in the fitted model")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$beta.comm.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'tau.sq.beta') {
if (class(x) %in% c('abund', 'spAbund', 'svcAbund', 'NMix',
'spNMix', 'DS', 'spDS')) {
stop("tau.sq.beta is not a parameter in the fitted model")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$tau.sq.beta.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'lambda') {
if (class(x) %in% c('abund', 'spAbund', 'svcAbund', 'NMix',
'spNMix', 'DS', 'spDS', 'msAbund', 'msNMix', 'msDS')) {
stop("lambda is not a parameter in the fitted model")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$lambda.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'tau.sq') {
if (!(class(x) %in% c('abund', 'spAbund', 'svcAbund', 'svcMsAbund',
'msAbund', 'lfMsAbund', 'sfMsAbund'))) {
stop("tau.sq is not a parameter in the fitted model")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$tau.sq.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'alpha.comm') {
if (class(x) %in% c('abund', 'spAbund', 'msAbund', 'lfMsAbund', 'sfMsAbund',
'svcAbund', 'svcMsAbund', 'NMix', 'spNMix', 'DS', 'spDS')) {
stop("alpha.comm is not a parameter in the fitted model")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$alpha.comm.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'tau.sq.alpha') {
if (class(x) %in% c('abund', 'spAbund', 'msAbund', 'lfMsAbund', 'sfMsAbund',
'svcAbund', 'svcMsAbund', 'NMix', 'spNMix', 'DS', 'spDS')) {
stop("tau.sq.alpha is not a parameter in the fitted model")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$tau.sq.alpha.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'theta') {
if (!(class(x) %in% c('spAbund', 'sfMsAbund',
'svcAbund', 'svcMsAbund',
'spNMix', 'sfMsNMix',
'spDS', 'sfMsDS'))) {
stop("theta is not a parameter in the fitted model")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$theta.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'beta') {
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$beta.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'alpha') {
if (class(x) %in% c('abund', 'spAbund', 'msAbund', 'lfMsAbund', 'sfMsAbund',
'svcAbund', 'svcMsAbund')) {
stop("alpha is not a parameter in the fitted model")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$alpha.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'sigma.sq.mu') {
if (!x$muRE) {
stop("sigma.sq.mu is not a parameter in the fitted model")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$sigma.sq.mu.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'sigma.sq.p') {
if (class(x) %in% c('abund', 'spAbund', 'msAbund', 'lfMsAbund', 'sfMsAbund',
'svcAbund', 'svcMsAbund')) {
stop("N is not a parameter in the fitted model")
}
if (!x$pRE) {
stop("sigma.sq.p is not a parameter in the fitted model")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$sigma.sq.p.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
# if (param == 'N') {
# if (class(x) %in% c('abund', 'spAbund', 'msAbund', 'lfMsAbund', 'sfMsAbund',
# 'svcAbund', 'svcMsAbund')) {
# stop("N is not a parameter in the fitted model")
# }
# for (i in 1:n.chains) {
# curr.samples[[i]] <- coda::mcmc(x$N.samples[indx, , drop = FALSE])
# indx <- (n.post * i + 1):(n.post * (i + 1))
# }
# }
# if (param == 'mu') {
# for (i in 1:n.chains) {
# curr.samples[[i]] <- coda::mcmc(x$mu.samples[indx, , drop = FALSE])
# indx <- (n.post * i + 1):(n.post * (i + 1))
# }
# }
if (param == 'beta.star') {
if (!x$muRE) {
stop("the model was not fit with any abundance random effects (beta.star)")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$beta.star.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
if (param == 'alpha.star') {
if (class(x) %in% c('abund', 'spAbund', 'msAbund', 'lfMsAbund', 'sfMsAbund',
'svcAbund', 'svcMsAbund')) {
stop("alpha.star is not a parameter in the fitted model")
}
if (!x$pRE) {
stop("the model was not fit with any detection random effects (alpha.star)")
}
for (i in 1:n.chains) {
curr.samples[[i]] <- coda::mcmc(x$alpha.star.samples[indx, , drop = FALSE])
indx <- (n.post * i + 1):(n.post * (i + 1))
}
}
curr.samples <- coda::mcmc.list(curr.samples)
plot(curr.samples, density = density)
}
plot.NMix <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.spNMix <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.msNMix <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.lfMsNMix <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.sfMsNMix <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.DS <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.spDS <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.msDS <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.lfMsDS <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.sfMsDS <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.abund <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.spAbund <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.msAbund <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.lfMsAbund <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.sfMsAbund <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.svcAbund <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.svcMsAbund <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
plot.svcAbund <- function(x, param, density = TRUE, ...) {
overallPlot(x, param, density)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.