# mkSpCov: Function for calculating univariate and multivariate... In spBayes: Univariate and Multivariate Spatial-Temporal Modeling

## Description

The function `mkSpCov` calculates a spatial covariance matrix given spatial locations and spatial covariance parameters.

## Usage

 `1` ```mkSpCov(coords, K, Psi, theta, cov.model) ```

## Arguments

 `coords` an nx2 matrix of the observation coordinates in R^2 (e.g., easting and northing). `K` the q x q spatial cross-covariance matrix. For a univariate model this corresponds to the partial sill, sigma^2. `Psi` the qxq non-spatial covariance matrix. For a univariate model this corresponds to the nugget, tau^2. `theta` a vector of q spatial decay parameters. If `cov.model` is `"matern"` then `theta` is a vector of length 2xq with the spatial decay parameters in the first q elements and the spatial smoothness parameters in the last q elements. `cov.model` a quoted keyword that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model key words are: `"exponential"`, `"matern"`, `"spherical"`, and `"gaussian"`. See below for details. `...` currently no additional arguments.

## Details

Covariance functions return the covariance C(h) between a pair locations separated by distance h. The covariance function can be written as a product of a variance parameter σ^2 and a positive definite correlation function ρ(h): C(h) = σ^2 * ρ(h), see, e.g., Banerjee et al. (2004) p. 27 for more details. The expressions of the correlations functions available in spBayes are given below. More will be added upon request.

For all correlations functions, phi is the spatial decay parameter. Some of the correlation functions will have an extra parameter nu, the smoothness parameter. K_ν(x) denotes the modified Bessel function of the third kind of order nu. See documentation of the function `besselK` for further details. The following functions are valid for φ > 0 and ν > 0, unless stated otherwise.

gaussian

ρ(h) = exp(-(φ*h)^2)

exponential

ρ(h) = exp(-φ*h)

matern

ρ(h) = (1/(2^(ν-1) * Γ(ν))) * ((φ*h)^ν) * K_{ν}(φ*h)

spherical

ρ(h) = 1 - 1.5 * (φ*h) + 0.5*(φ*h)^3 if h < 1/φ , 0 otherwise

## Value

 `C` the nqxnq spatial covariance matrix.

## Author(s)

Andrew O. Finley [email protected],
Sudipto Banerjee [email protected]

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21``` ```## Not run: ##A bivariate spatial covariance matrix n <- 2 ##number of locations q <- 2 ##number of responses at each location nltr <- q*(q+1)/2 ##number of triangular elements in the cross-covariance matrix coords <- cbind(runif(n,0,1), runif(n,0,1)) ##spatial decay parameters theta <- rep(6,q) A <- matrix(0,q,q) A[lower.tri(A,TRUE)] <- rnorm(nltr, 5, 1) K <- A%*%t(A) Psi <- diag(1,q) C <- mkSpCov(coords, K, Psi, theta, cov.model="exponential") ## End(Not run) ```

spBayes documentation built on July 20, 2017, 1:02 a.m.