| spRecover | R Documentation | 
spLM, spMvLM,
spMisalignLM, spSVC using composition sampling
Function for recovering regression coefficients and spatial random
effects for spLM, spMvLM, and
spMisalignLM using composition sampling.
spRecover(sp.obj, get.beta=TRUE, get.w=TRUE, start=1, end, thin=1,
          verbose=TRUE, n.report=100, n.omp.threads=1, ...)
| sp.obj | an object returned by  | 
| get.beta | if  | 
| get.w | if  | 
| start | specifies the first sample included in the composition sampling. | 
| end | specifies the last sample included in the composition.
The default is to use all posterior samples in  | 
| thin | a sample thinning factor.  The default of 1 considers all
samples between  | 
| verbose | if  | 
| n.report | the interval to report sampling progress. | 
| n.omp.threads | a positive integer indicating
the number of threads to use for SMP parallel processing. The package must
be compiled for OpenMP support. For most Intel-based machines, we
recommend setting  | 
| ... | currently no additional arguments. | 
The input sp.obj with posterior samples of regression coefficients and/or spatial random effects appended. 
tags:
| p.theta.recover.samples | those  | 
| p.beta.recover.samples | a  | 
| p.w.recover.samples | a  For  | 
| p.w.recover.samples.list | only returned for
 | 
| p.tilde.beta.recover.samples.list | only returned for
 | 
| p.y.samples | only returned for
 | 
Andrew O. Finley finleya@msu.edu, 
Sudipto Banerjee sudipto@ucla.edu
Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2004). Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press, Boca Raton, FL.
Finley, A.O., S. Banerjee, and A.E. Gelfand. (2015) spBayes for large univariate and multivariate point-referenced spatio-temporal data models. Journal of Statistical Software, 63:1–28. https://www.jstatsoft.org/article/view/v063i13.
Finley, A.O. and S. Banerjee (2019) Bayesian spatially varying coefficient models in the spBayes R package. https://arxiv.org/abs/1903.03028.
## Not run: 
rmvn <- function(n, mu=0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p))))
    stop("Dimension problem!")
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
set.seed(1)
n <- 50
coords <- cbind(runif(n,0,1), runif(n,0,1))
X <- as.matrix(cbind(1, rnorm(n)))
B <- as.matrix(c(1,5))
p <- length(B)
sigma.sq <- 10
tau.sq <- 0.01
phi <- 3/0.5
D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0,n), sigma.sq*R)
y <- rnorm(n, X%*%B + w, sqrt(tau.sq))
n.samples <- 1000
starting <- list("phi"=3/0.5, "sigma.sq"=50, "tau.sq"=1)
tuning <- list("phi"=0.1, "sigma.sq"=0.1, "tau.sq"=0.1)
priors <- list("beta.Flat", "phi.Unif"=c(3/1, 3/0.1),
               "sigma.sq.IG"=c(2, 5), "tau.sq.IG"=c(2, 0.01))
cov.model <- "exponential"
m.1 <- spLM(y~X-1, coords=coords, starting=starting, tuning=tuning,
            priors=priors, cov.model=cov.model, n.samples=n.samples)
m.1 <- spRecover(m.1, start=0.5*n.samples, thin=2)
summary(window(m.1$p.beta.recover.samples))
w.hat <- apply(m.1$p.w.recover.samples, 1, mean)
plot(w, w.hat, xlab="Observed w", ylab="Fitted w")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.