Nothing
#' Fit Self-Exciting Negative Binomial Model with Prediction
#'
#' Fits a self-exciting negative binomial (SE-NB) model using JAGS, with an optional
#' design matrix of covariates and full inprod for mean structure, and
#' can generate posterior predictive counts including self-excitation.
#'
#'
#' @importFrom R2jags jags
#' @importFrom coda as.mcmc
#' @param cases Vector of observed counts (length N)
#' @param pop Optional vector of population offsets (length N)
#' @param covariates Optional numeric matrix (N x P) of covariates for the count component.
#' @param covariatespred Optional numeric matrix (M x P) of new covariates for count prediction.
#' @param poppred Optional vector of population offsets (length M) for prediction.
#' @param casespred Optional vector of true counts (length M) for prediction performance.
#' @param casesoldold Optional parameter of the cases of 1 timepoint previous than the start of timepoints fit.
#' @param casesoldpred Optional parameter of the cases of 1 timepoint previous than the start of the prediction.
#' @param beta_init Optional list of length n_chains for beta, count coefficients initial values.
#' @param r_init Optional numeric vector of length n_chains for dispersion parameter.
#' @param beta_prior_mean Mean for beta prior (default: 0)
#' @param beta_prior_sd SD for beta prior (default: 10)
#' @param r_prior_shape Shape for r ~ dgamma (default: 1)
#' @param r_prior_rate Rate for r ~ dgamma (default: 1)
#' @param n_iter Total MCMC iterations (default: 100000)
#' @param n_burnin Burn-in iterations (default: 10000)
#' @param n_chains Number of chains (default: 3)
#' @param n_thin Thinning interval (default: 1)
#' @param save_params Character vector of parameters to save (default c("beta","r","eta"))
#' @return A list with MCMC summary, samples, DIC, and if prediction data provided:
#' prediction_matrix, prediction_mean, mae, rmse
#'
#' @export
#' @examples
#' # ---- tiny example for users & CRAN (< 5s) ----
#' set.seed(1)
#' cases <- rnbinom(72, size = 5, mu = 8) # toy NB series
#'
#' \dontshow{
#' # checks that run on CRAN but are hidden from users
#' stopifnot(length(cases) == 72, all(cases >= 0))
#' }
#'
#' # ---- actually fit the model, but only when JAGS is available ----
#' @examplesIf nzchar(Sys.which("jags")) && requireNamespace("R2jags", quietly = TRUE)
#' fit <- SENB(
#' cases = cases,
#' beta_prior_mean = 0,
#' beta_prior_sd = 5,
#' r_prior_shape = 2,
#' r_prior_rate = 0.5,
#' n_iter = 400, # keep fast
#' n_burnin = 200,
#' n_chains = 1,
#' n_thin = 2
#' )
#' print(fit)
#'
#' \donttest{
#' # ---- longer user-facing demo (skipped on checks) ----
#' if (nzchar(Sys.which("jags")) && requireNamespace("R2jags", quietly = TRUE)) {
#' fit2 <- SENB(
#' cases = cases,
#' beta_prior_mean = 0,
#' beta_prior_sd = 5,
#' r_prior_shape = 2,
#' r_prior_rate = 0.5,
#' n_iter = 1500,
#' n_burnin = 500,
#' n_chains = 2,
#' n_thin = 2
#' )
#' print(fit2)
#' }
#' }
#'
#' \dontrun{
#' # ---- time-consuming / full demo ----
#' if (nzchar(Sys.which("jags")) && requireNamespace("R2jags", quietly = TRUE)) {
#' fit_full <- SENB(
#' cases = cases,
#' beta_prior_mean = 0,
#' beta_prior_sd = 5,
#' r_prior_shape = 2,
#' r_prior_rate = 0.5,
#' n_iter = 10000,
#' n_burnin = 5000,
#' n_chains = 4,
#' n_thin = 5
#' )
#' print(fit_full)
#' }
#' }
#'
#' if (interactive()) {
#' # e.g., plot(fit)
#' }
SENB <- function(
cases,
pop = NULL,
casesoldold=0,
covariates = NULL,
covariatespred = NULL,
poppred = NULL,
casesoldpred = 0,
casespred = NULL,
beta_init = NULL,
r_init = NULL,
beta_prior_mean = 0,
beta_prior_sd = 10,
r_prior_shape = 1,
r_prior_rate = 1,
n_iter = 100000,
n_burnin = 10000,
n_chains = 3,
n_thin = 1,
save_params = c("beta","r","eta")
) {
if (!requireNamespace("R2jags", quietly=TRUE)) stop("Package R2jags must be installed.")
N <- length(cases)
# Build design matrix
if (!is.null(covariates)) {
X1 <- as.matrix(covariates)
if (nrow(X1)!=N) stop("covariates must match length of cases.")
} else {
X1 <- matrix(0, N, 0)
}
X <- cbind(Intercept=1, X1)
K <- ncol(X)
# Offsets
if (is.null(pop)) {
pop_vec <- rep(1, N)
offset <- ""
offset1 <- ""
} else {
pop_vec <- as.numeric(pop)
offset <- "log(pop[t]) + "
offset1 <- "log(pop[1]) + "
}
# JAGS model string (uses casesoldold in model)
model_string <- paste(
"model{",
" Y[1] ~ dnegbin(pr[1], r)",
" pr[1] <- r/(r + mu[1])",
" mu[1] <- mu0[1] + eta * casesoldold",
" mu0[1] <- exp(lambda0[1])",
paste0(" lambda0[1] <- ", offset1, "inprod(X[1,1:K], beta[1:K])"),
" for(t in 2:N){",
" Y[t] ~ dnegbin(pr[t], r)",
" pr[t] <- r/(r + mu[t])",
" mu[t] <- mu0[t] + eta * Y[t-1]",
" mu0[t] <- exp(lambda0[t])",
paste0(" lambda0[t] <- ", offset, "inprod(X[t,1:K], beta[1:K])"),
" }",
" # Priors",
paste0(" for(k in 1:K){ beta[k] ~ dnorm(", beta_prior_mean, ", 1/", beta_prior_sd^2, ") }"),
paste0(" r ~ dgamma(", r_prior_shape, ", ", r_prior_rate, ")"),
" eta ~ dbeta(1,1)",
"}", sep="\n"
)
# Write model and run
model_file <- tempfile(fileext=".bug")
writeLines(model_string, model_file)
on.exit(unlink(model_file))
# Initial values
if (is.null(beta_init)) beta_init <- lapply(1:n_chains, function(i) rep(0, K))
if (is.null(r_init)) r_init <- seq(0.5, 0.5 + 0.5 * (n_chains - 1), length.out = n_chains)
inits <- lapply(1:n_chains, function(i) list(
beta = beta_init[[i]],
r = r_init[i],
eta = 0.5
))
data_jags <- list(
Y = cases,
N = N,
X = X,
pop = pop_vec,
K = K,
casesoldold = casesoldold
)
jags_out <- R2jags::jags(
data = data_jags,
inits = inits,
parameters.to.save= save_params,
model.file = model_file,
n.iter = n_iter,
n.burnin = n_burnin,
n.chains = n_chains,
n.thin = n_thin
)
sum_df <- as.data.frame(jags_out$BUGSoutput$summary)
sum_df$dic <- jags_out$BUGSoutput$DIC
res <- list(
mcmc_summary = sum_df,
mcmc_samples = coda::as.mcmc(jags_out),
dic = sum_df$dic[1]
)
# WAIC
waic_s <- rjags::jags.samples(jags_out$model, c("WAIC","deviance"), type="mean", n.iter=1000)
p_waic <- sum(waic_s$WAIC)
dev <- sum(waic_s$deviance)
res$waic <- round(c(waic = dev + p_waic, p_waic = p_waic), 1)
# Prediction block uses casesoldpred
if (!is.null(covariatespred)) {
Xp1 <- as.matrix(covariatespred)
M <- nrow(Xp1)
if (ncol(Xp1) != ncol(X1)) stop("covariatespred must match covariates cols.")
Xpred <- cbind(Intercept=1, Xp1)
sims <- jags_out$BUGSoutput$sims.matrix
beta_post <- sims[, grep("^beta\\[", colnames(sims)), drop=FALSE]
r_post <- sims[, "r"]
eta_post <- sims[, "eta"]
npost <- nrow(beta_post)
pred_mat <- matrix(NA, npost, M)
for (i in 1:npost) {
# first step uses casesoldpred
mu0_1 <- exp((if (is.null(poppred)) 0 else log(poppred[1])) +
as.numeric(Xpred[1, ] %*% beta_post[i, ]))
mu_1 <- mu0_1 + eta_post[i] * casesoldpred
pr_1 <- r_post[i] / (r_post[i] + mu_1)
pred_mat[i,1] <- rnbinom(1, size = r_post[i], prob = pr_1)
# subsequent steps
for (t in 2:M) {
mu0_t <- exp((if (is.null(poppred)) 0 else log(poppred[t])) +
as.numeric(Xpred[t, ] %*% beta_post[i, ]))
mu_t <- mu0_t + eta_post[i] * pred_mat[i, t-1]
pr_t <- r_post[i] / (r_post[i] + mu_t)
pred_mat[i,t] <- rnbinom(1, size = r_post[i], prob = pr_t)
}
}
res$pred_matrix <- pred_mat
res$pred_mean <- colMeans(pred_mat)
if (!is.null(casespred)) {
if (length(casespred) != M) stop("casespred length must equal M")
res$mae <- mean(abs(res$pred_mean - casespred))
res$rmse <- sqrt(mean((res$pred_mean - casespred)^2))
}
}
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.