Nothing
#' Fit Zero-Inflated Negative Binomial Model with Arbitrary Covariates and Prediction
#'
#'
#' Fits a zero-inflated negative binomial (ZINB) model using JAGS, with an optional
#' design matrix of covariates and full inprod for mean structure, and
#' can generate posterior predictive counts for new covariate data.
#'
#' @importFrom R2jags jags
#' @importFrom coda as.mcmc
#' @param cases Vector of observed counts (length N)
#' @param pop Optional vector of population offsets (length N)
#' @param covariates_count Optional numeric matrix (N x P) of covariates for the count component.
#' @param covariates_zero Optional numeric matrix (N x Q) of covariates for the zero-inflation component.
#' @param covariatespred_count Optional numeric matrix (M x P) of new covariates for count prediction.
#' @param covariatespred_zero Optional numeric matrix (M x Q) of new covariates for zero-inflation prediction.
#' @param poppred Optional vector of population offsets (length M) for prediction.
#' @param casespred Optional vector of true counts (length M) for prediction performance.
#' @param beta_init Optional list of length n_chains for beta, count coefficients initial values.
#' @param delta_init Optional list of length n_chains for delta, zero-inflation coefficients.
#' @param r_init Optional numeric vector of length n_chains for dispersion parameter.
#' @param beta_prior_mean Mean for beta prior (default: 0)
#' @param beta_prior_sd SD for beta prior (default: 10)
#' @param delta_prior_mean Mean for delta prior (default: 0)
#' @param delta_prior_sd SD for delta prior (default: 10)
#' @param r_prior_shape Shape for r ~ dgamma (default: 1)
#' @param r_prior_rate Rate for r ~ dgamma (default: 1)
#' @param n_iter Total MCMC iterations (default: 100000)
#' @param n_burnin Burn-in iterations (default: 10000)
#' @param n_chains Number of chains (default: 3)
#' @param n_thin Thinning interval (default: 1)
#' @param save_params Character vector of parameters to save (default c("beta","delta","r"))
#' @return A list with MCMC summary, samples, DIC, and if prediction data provided:
#' pred_matrix, pred_mean, mae, rmse
#' @export
#' @examples
#' # ---- tiny example for users & CRAN (< 5s) ----
#' set.seed(5)
#' n <- 100
#' base <- rnbinom(n, size = 5, mu = 7)
#' zeros <- rbinom(n, 1, 0.25) # add extra zeros
#' cases <- ifelse(zeros == 1, 0L, base)
#' \dontshow{
#' stopifnot(length(cases) == n, all(cases >= 0))
#' }
#'
#' # ---- actually fit the model, but only when JAGS is available ----
#' @examplesIf nzchar(Sys.which("jags")) && requireNamespace("R2jags", quietly = TRUE)
#' fit <- ZINB(
#' cases = cases,
#' # optional priors if your API exposes them, e.g.:
#' # beta_prior_mean = 0, beta_prior_sd = 5,
#' # r_prior_shape = 2, r_prior_rate = 0.5,
#' n_iter = 400, # keep fast
#' n_burnin = 200,
#' n_chains = 1,
#' n_thin = 2
#' )
#' print(fit)
#'
#' \donttest{
#' # ---- longer user-facing demo (skipped on checks) ----
#' if (nzchar(Sys.which("jags")) && requireNamespace("R2jags", quietly = TRUE)) {
#' x <- sin(2*pi*seq_len(n)/12) # simple seasonal regressor
#' fit2 <- ZINB(
#' cases = cases,
#' covariates_count = cbind(x),
#' covariates_zero = cbind(x),
#' n_iter = 1000,
#' n_burnin = 100,
#' n_chains = 2,
#' n_thin = 2
#' )
#' print(fit2)
#' # if a plot method exists: # plot(fit2)
#' }
#' }
#'
#' \dontrun{
#' # ---- time-consuming / full demo ----
#' if (nzchar(Sys.which("jags")) && requireNamespace("R2jags", quietly = TRUE)) {
#' fit_full <- ZINB(
#' cases = cases,
#' n_iter = 100000,
#' n_burnin = 10000,
#' n_chains = 4,
#' n_thin = 5
#' )
#' print(fit_full)
#' }
#' }
#'
#' if (interactive()) {
#' # e.g., plot(fit)
#' }
ZINB <- function(
cases,
pop = NULL,
covariates_count = NULL,
covariates_zero = NULL,
covariatespred_count = NULL,
covariatespred_zero = NULL,
poppred = NULL,
casespred = NULL,
beta_init = NULL,
delta_init = NULL,
r_init = NULL,
beta_prior_mean = 0,
beta_prior_sd = 10,
delta_prior_mean = 0,
delta_prior_sd = 10,
r_prior_shape = 1,
r_prior_rate = 1,
n_iter = 100000,
n_burnin = 10000,
n_chains = 3,
n_thin = 1,
save_params = c("beta","delta","r")
) {
if (!requireNamespace("R2jags", quietly = TRUE))
stop("Package R2jags is required.")
N <- length(cases)
# --- Build design matrices for estimation ---
Xc <- if (!is.null(covariates_count)) {
mat <- as.matrix(covariates_count)
if (nrow(mat) != N) stop("covariates_count must match length of cases.")
cbind(Intercept=1, mat)
} else matrix(1, nrow = N, ncol = 1)
Kc <- ncol(Xc)
Xz <- if (!is.null(covariates_zero)) {
mat <- as.matrix(covariates_zero)
if (nrow(mat) != N) stop("covariates_zero must match length of cases.")
cbind(Intercept=1, mat)
} else matrix(1, nrow = N, ncol = 1)
Kz <- ncol(Xz)
# --- Population offsets ---
pop_vec <- if (is.null(pop)) rep(1, N) else as.numeric(pop)
off_str <- if (is.null(pop)) "" else "log(pop[t]) + "
# --- JAGS model string ---
model_string <- paste(
"model{",
" for(t in 1:N){",
" ze[t] ~ dbern(pi[t])",
" y[t] ~ dnegbin(pr[t], r)",
" pr[t] <- r / (r + (1-ze[t])*mu[t])",
paste0(" mu[t] <- exp(", off_str,
"inprod(Xc[t,1:Kc], beta[1:Kc])) * (1 - ze[t])"),
paste0(" logit(pi[t]) <- inprod(Xz[t,1:Kz], delta[1:Kz])"),
" }",
" for(k in 1:Kc){ beta[k] ~ dnorm(", beta_prior_mean,
", 1/", beta_prior_sd^2, ") }",
" for(k in 1:Kz){ delta[k] ~ dnorm(", delta_prior_mean,
", 1/", delta_prior_sd^2, ") }",
paste0(" r ~ dgamma(", r_prior_shape, ", ", r_prior_rate, ")"),
"}", sep = "\n"
)
# --- Write and run JAGS ---
model_file <- tempfile(fileext = ".bug")
writeLines(model_string, model_file)
on.exit(unlink(model_file), add = TRUE)
# --- Initial values ---
if (is.null(beta_init)) beta_init <- replicate(n_chains, rep(0, Kc), simplify=FALSE)
if (is.null(delta_init)) delta_init <- replicate(n_chains, rep(0, Kz), simplify=FALSE)
if (is.null(r_init)) r_init <- rep(1, n_chains)
inits <- lapply(seq_len(n_chains), function(i) list(
beta = beta_init[[i]],
delta = delta_init[[i]],
r = r_init[i]
))
data4j <- list(y = cases, N = N, Xc = Xc, Xz = Xz, pop = pop_vec, Kc = Kc, Kz = Kz)
jags_out <- R2jags::jags(
data = data4j,
inits = inits,
parameters.to.save = save_params,
model.file = model_file,
n.iter = n_iter,
n.burnin = n_burnin,
n.chains = n_chains,
n.thin = n_thin
)
summary_df <- as.data.frame(jags_out$BUGSoutput$summary)
summary_df$dic <- jags_out$BUGSoutput$DIC
result <- list(
mcmc_summary = summary_df,
mcmc_samples = coda::as.mcmc(jags_out),
dic = summary_df$dic[1]
)
# --- Prediction if requested ---
if (!is.null(covariatespred_count)) {
Xc1p <- as.matrix(covariatespred_count)
M <- nrow(Xc1p)
if (ncol(Xc1p) != Kc-1) stop("covariatespred_count must match count covariates.")
Xcp <- cbind(Intercept=1, Xc1p)
Xz1p <- if (!is.null(covariatespred_zero)) as.matrix(covariatespred_zero) else matrix(0, M, Kz-1)
if (!is.null(covariatespred_zero) && ncol(Xz1p) != Kz-1) stop("covariatespred_zero must match zero covariates.")
Xzp <- cbind(Intercept=1, Xz1p)
popp <- if (is.null(poppred)) rep(1, M) else as.numeric(poppred)
sims <- jags_out$BUGSoutput$sims.matrix
beta_p <- sims[, grep("^beta", colnames(sims)), drop=FALSE]
delta_p<- sims[, grep("^delta", colnames(sims)), drop=FALSE]
r_p <- sims[, "r"]
npost <- nrow(beta_p)
pred_matrix <- matrix(NA, npost, M)
for (i in seq_len(npost)) {
for (t in seq_len(M)) {
pi_t <- plogis(as.numeric(Xzp[t,] %*% delta_p[i,]))
ze <- rbinom(1, 1, pi_t)
mu_t <- exp(log(popp[t]) + as.numeric(Xcp[t,] %*% beta_p[i,])) * (1-ze)
pr <- r_p[i] / (r_p[i] + (1-ze)*mu_t)
pred_matrix[i,t] <- rnbinom(1, size=r_p[i], prob=pr)
}
}
result$pred_matrix <- pred_matrix
result$pred_mean <- colMeans(pred_matrix)
if (!is.null(casespred)) {
if (length(casespred)!=M) stop("casespred must match number of prediction points.")
result$mae <- mean(abs(result$pred_mean - casespred))
result$rmse <- sqrt(mean((result$pred_mean - casespred)^2))
}
}
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.