Nothing
##
## auclpp.R
##
## Calculate ROC curve or area under it
##
## code for linear networks
##
## $Revision: 1.1 $ $Date: 2020/06/17 04:32:13 $
roc.lpp <- function(X, covariate, ..., high=TRUE) {
nullmodel <- lppm(X)
result <- rocData(covariate, nullmodel, ..., high=high)
return(result)
}
roc.lppm <- function(X, ...) {
stopifnot(is.lppm(X))
model <- X
lambda <- predict(model, ...)
Y <- X$X
nullmodel <- lppm(Y)
result <- rocModel(lambda, nullmodel, ...)
return(result)
}
# ......................................................
auc.lpp <- function(X, covariate, ..., high=TRUE) {
d <- spatialCDFframe(lppm(X), covariate, ...)
U <- d$values$U
EU <- mean(U)
result <- if(high) EU else (1 - EU)
return(result)
}
auc.lppm <- function(X, ...) {
stopifnot(inherits(X, "lppm"))
model <- X
if(is.multitype(model)) {
# cheat
ro <- roc(model, ...)
aobs <- with(ro, mean(fobs))
atheo <- with(ro, mean(ftheo))
} else {
lambda <- predict(model, ...)
Fl <- ecdf(lambda[])
lamX <- lambda[model$X]
aobs <- mean(Fl(lamX))
atheo <- mean(lambda[] * Fl(lambda[]))/mean(lambda)
}
result <- c(aobs, atheo)
names(result) <- c("obs", "theo")
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.