R/lppm.R

Defines functions response.lppm emend.lppm valid.lppm vcov.lppm is.marked.lppm is.multitype.lppm is.stationary.lppm is.poisson.lppm nobs.lppm as.linnet.lppm model.frame.lppm model.matrix.lppm data.lppm Window.lppm as.owin.lppm extractAIC.lppm formula.lppm pseudoR2.lppm deviance.lppm logLik.lppm terms.lppm updateData.lppm update.lppm anova.lppm plot.lppm summary.lppm print.lppm coef.lppm fitted.lppm hasglmfit.lppm getglmsubset.lppm getglmfit.lppm getglmdata.lppm as.ppm.lppm is.lppm lppm.lpp lppm.formula lppm

Documented in anova.lppm as.linnet.lppm as.owin.lppm as.ppm.lppm coef.lppm data.lppm deviance.lppm emend.lppm extractAIC.lppm fitted.lppm formula.lppm getglmdata.lppm getglmfit.lppm getglmsubset.lppm hasglmfit.lppm is.marked.lppm is.multitype.lppm is.poisson.lppm is.stationary.lppm logLik.lppm lppm lppm.formula lppm.lpp model.frame.lppm model.matrix.lppm nobs.lppm plot.lppm print.lppm pseudoR2.lppm response.lppm summary.lppm terms.lppm updateData.lppm update.lppm valid.lppm vcov.lppm Window.lppm

#
#  lppm.R
#
#  Point process models on a linear network
#
#  $Revision: 1.57 $   $Date: 2024/01/25 10:21:02 $
#

lppm <- function(X, ...) {
  UseMethod("lppm")
}


lppm.formula <- function(X, interaction=NULL, ..., data=NULL) {
  ## remember call
  callstring <- paste(short.deparse(sys.call()), collapse = "")
  cl <- match.call()

  ########### INTERPRET FORMULA ##############################
  
  if(!inherits(X, "formula"))
    stop(paste("Argument 'X' should be a formula"))
  formula <- X
  
  if(spatstat.options("expand.polynom"))
    formula <- expand.polynom(formula)

  ## check formula has LHS and RHS. Extract them
  if(length(formula) < 3)
    stop(paste("Formula must have a left hand side"))
  Yexpr <- formula[[2L]]
  trend <- formula[c(1L,3L)]
  
  ## FIT #######################################
  thecall <- call("lppm", X=Yexpr, trend=trend,
                  data=data, interaction=interaction)
  ncall <- length(thecall)
  argh <- list(...)
  nargh <- length(argh)
  if(nargh > 0) {
    thecall[ncall + 1:nargh] <- argh
    names(thecall)[ncall + 1:nargh] <- names(argh)
  }
  callenv <- list2env(as.list(data), parent=parent.frame())
  result <- eval(thecall, envir=callenv)

  result$Xname <- short.deparse(Yexpr)
  
  result$call <- cl
  result$callstring <- callstring

  return(result)
}

lppm.lpp <- function(X, ..., eps=NULL, nd=1000, random=FALSE) {
  Xname <- short.deparse(substitute(X))
  callstring <- paste(short.deparse(sys.call()), collapse = "")
  cl <- match.call()
  nama <- names(list(...))
  resv <- c("method", "forcefit")
  if(any(clash <- resv %in% nama))
    warning(paste(ngettext(sum(clash), "Argument", "Arguments"),
                  commasep(sQuote(resv[clash])),
                  "must not be used"))
  stopifnot(inherits(X, "lpp"))
  quadarg <- substitute(linequad(X, eps=eps, nd=nd, random=random),
                        list(X=substitute(X),
                             eps=substitute(eps),
                             nd=substitute(nd),
                             random=substitute(random)))
  fit <- do.call(ppm,
                 list(quadarg, ..., method="mpl", forcefit=TRUE),
                 envir=parent.frame())
  if(!is.poisson.ppm(fit))
    warning("Non-Poisson models currently use Euclidean distance")
  out <- list(X=X, fit=fit, Xname=Xname, call=cl, callstring=callstring)
  class(out) <- "lppm"
  return(out)
}

is.lppm <- function(x) { inherits(x, "lppm") }

# undocumented
as.ppm.lppm <- function(object) { object$fit }

##

getglmdata.lppm <- function(object, ...) { getglmdata(as.ppm(object), ...) }

getglmfit.lppm <- function(object, ...) { getglmfit(as.ppm(object), ...) }

getglmsubset.lppm <- function(object, ...) { getglmsubset(as.ppm(object), ...) }

hasglmfit.lppm <- function(object) { hasglmfit(as.ppm(object)) }

##

fitted.lppm <- function(object, ..., dataonly=FALSE, new.coef=NULL,
                        leaveoneout=FALSE) {
  pfit <- object$fit
  v <- fitted(pfit, dataonly=dataonly, new.coef=new.coef,
              leaveoneout=leaveoneout)
  return(v)
}
  
predict.lppm <- local({
  
  predict.lppm <- function(object, ..., 
                           type="trend", locations=NULL, covariates=NULL,
                           se=FALSE,
                           new.coef=NULL) {
    type <- pickoption("type", type,
                       c(trend="trend", cif="cif", lambda="cif"))
    X <- object$X
    fit <- object$fit
    L <- as.linnet(X)
    
    if(!is.null(locations)) {
      #' locations given; return a vector/matrix of predicted values
      if(is.lpp(locations)) locations <- as.ppp(locations)
      values <- predict(fit, locations=locations, covariates=covariates,
                        type=type, se=se, new.coef=new.coef)
      return(values)
    }
  
    #' locations not given; want a pixel image
    #' pixellate the lines
    Llines <- as.psp(L)
    linemask <- psp2mask(Llines, ...)
    lineimage <- as.im(linemask)
    #' extract pixel centres
    xx <- rasterx.mask(linemask)
    yy <- rastery.mask(linemask)
    mm <- linemask$m
    xx <- as.vector(xx[mm])
    yy <- as.vector(yy[mm])
    pixelcentres <- ppp(xx, yy, window=as.rectangle(linemask), check=FALSE)
    pixdf <- data.frame(xc=xx, yc=yy)
    #' project pixel centres onto lines
    p2s <- project2segment(pixelcentres, Llines)
    projloc <- as.data.frame(p2s$Xproj)
    projmap <- as.data.frame(p2s[c("mapXY", "tp")])
    projdata <- cbind(pixdf, projloc, projmap)
    #' predict at the projected points
    if(!is.multitype(fit)) {
      #' unmarked
      values <- predict(fit, locations=projloc, covariates=covariates,
                        type=type, se=se, new.coef=new.coef)
      if(!se) {
        out <- putvalues(values, lineimage, pixelcentres, projdata, L)
      } else {
        outfit <- putvalues(values[[1L]], lineimage, pixelcentres, projdata, L)
        outse  <- putvalues(values[[2L]], lineimage, pixelcentres, projdata, L)
        out <- solist(outfit, outse)
        names(out) <- c(type, "se")
      }
    } else {
      #' multitype 
      #' predict for each type
      lev <- levels(marks(data.ppm(fit)))
      out <- outfit <- outse <- list()
      for(k in seq(length(lev))) {
        markk <- factor(lev[k], levels=lev)
        locnk <- cbind(projloc, data.frame(marks=markk))
        values <- predict(fit, locations=locnk, covariates=covariates,
                          type=type, se=se, new.coef=new.coef)
        if(!se) {
          out[[k]] <- putvalues(values, lineimage, pixelcentres, projdata, L)
        } else {
          outfit[[k]] <-
            putvalues(values[[1L]], lineimage, pixelcentres, projdata, L)
          outse[[k]]  <-
            putvalues(values[[2L]], lineimage, pixelcentres, projdata, L)
        }
      }
      if(!se) {
        out <- as.solist(out)
        names(out) <- as.character(lev)
      } else {
        outfit <- as.solist(outfit)
        outse <- as.solist(outse)
        names(outfit) <- names(outse) <- as.character(lev)
        out <- list(outfit, outse)
        names(out) <- c(type, "se")
      }
    }
    return(out)
  }

  putvalues <- function(values, lineimage, pixelcentres, projdata, L) {
    ## insert numerical 'values' in the right places in a linim
    ## (1) image component: map to nearest pixels
    Z <- lineimage
    Z[pixelcentres] <- values
    ## (2) data frame: attach exact line position data
    df <- cbind(projdata, values)
    out <- linim(L, Z, df=df, restrict=FALSE)
    return(out)
  }

  predict.lppm
})


coef.lppm <- function(object, ...) {
  coef(object$fit)
}

print.lppm <- function(x, ...) {
  terselevel <- spatstat.options('terse')
  splat("Point process model on linear network")
  if(waxlyrical('extras', terselevel)) {
    splat("\tFitted to point pattern dataset", sQuote(x$Xname))
    parbreak(terselevel)
  }
  print(x$fit, showname=FALSE)
  parbreak(terselevel)
  if(waxlyrical('gory', terselevel)) {
    cat("Domain: ")
    print(as.linnet(x))
  }
  return(invisible(NULL))
}

summary.lppm <- function(object, ...) {
  splat("Point process model on linear network")
  splat("Fitted to point pattern dataset", sQuote(object$Xname))
  cat("Internal fit: ")
  print(summary(object$fit))
  terselevel <- spatstat.options('terse')
  if(waxlyrical('extras', terselevel)) {
    parbreak(terselevel)
    splat("Original data:", object$Xname)
    if(waxlyrical('gory', terselevel)) {
      cat("Domain: ")
      print(summary(as.linnet(object)))
    }
  }
  return(invisible(NULL))
}

plot.lppm <- function(x, ..., type="trend") {
  xname <- short.deparse(substitute(x))
  y <- predict(x, type=type)
  dont.complain.about(y)
  do.call(plot, resolve.defaults(list(quote(y)),
                                   list(...),
                                   list(main=xname)))
}
  
anova.lppm <- function(object, ..., test=NULL) {
  stuff <- list(object=object, ...)
  if(!is.na(hit <- match("override", names(stuff)))) {
    warning("Argument 'override' is outdated and was ignored")
    stuff <- stuff[-hit]
  }
  #' extract ppm objects where appropriate
  mod <- sapply(stuff, is.lppm)
  stuff[mod] <- lapply(stuff[mod], getElement, name="fit")
  #' analysis of deviance or adjusted composite deviance
  do.call(anova.ppm, append(stuff, list(test=test)))
}

update.lppm <- function(object, ...) {
  stopifnot(inherits(object, "lppm"))
  X <- object$X
  fit <- object$fit
  Xname <- object$Xname
  callframe <- environment(formula(fit))
  aargh <- list(...)
  islpp <- sapply(aargh, is.lpp)
  if(any(islpp)) {
    # trap point pattern argument & convert to quadscheme
    ii <- which(islpp)
    if((npp <- length(ii)) > 1)
      stop(paste("Arguments not understood:", npp, "lpp objects given"))
    X <- aargh[[ii]]
    aargh[[ii]] <- linequad(X)
    Xexpr <- sys.call()[[ii+2L]] %orifnull% expression(X)
    Xname <- short.deparse(Xexpr)
  }
  isfmla <- sapply(aargh, inherits, what="formula")
  if(any(isfmla)) {
    # trap formula pattern argument, update it, evaluate LHS if required
    jj <- which(isfmla)
    if((nf <- length(jj)) > 1)
      stop(paste("Arguments not understood:", nf, "formulae given"))
    fmla <- aargh[[jj]]
    fmla <- update(formula(object), fmla)
    if(!is.null(lhs <- lhs.of.formula(fmla))) {
      X <- eval(lhs, envir=list2env(list("."=X), parent=callframe))
      Qpos <- if(any(islpp)) ii else (length(aargh) + 1L)
      aargh[[Qpos]] <- linequad(X)
      Xname <- short.deparse(lhs)
    }
    aargh[[jj]] <- rhs.of.formula(fmla)
  }
  newfit <- do.call(update.ppm,
                    append(list(fit), aargh),
                    envir=callframe)
  if(!is.poisson.ppm(newfit))
    warning("Non-Poisson models currently use Euclidean distance")
  out <- list(X=X, fit=newfit, Xname=Xname)
  class(out) <- "lppm"
  return(out)
}

updateData.lppm <- function(model, X, ...) {
  update(model, Q=X)
}

terms.lppm <- function(x, ...) {
  terms(x$fit, ...)
}

logLik.lppm <- function(object, ...) {
  logLik(object$fit, ...)
}

deviance.lppm <- function(object, ...) {
  deviance(object$fit, ...)
}

pseudoR2.lppm <- function(object, ..., keepoffset=TRUE) {
  dres <- deviance(object, ..., warn=FALSE)
  nullfmla <- . ~ 1
  if(keepoffset && has.offset.term(object)) {
    off <- attr(model.depends(object), "offset")
    offterms <- row.names(off)[apply(off, 1, any)]
    if(length(offterms)) {
      nullrhs <- paste(offterms, collapse=" + ") 
      nullfmla <- as.formula(paste(". ~ ", nullrhs))
    }
  } 
  nullmod <- update(object, nullfmla, forcefit=TRUE)
  dnul <- deviance(nullmod, warn=FALSE)
  return(1 - dres/dnul)
}

formula.lppm <- function(x, ...) {
  formula(x$fit, ...)
}

extractAIC.lppm <- function(fit, ...) {
  extractAIC(fit$fit, ...)
}

as.owin.lppm <- function(W, ..., fatal=TRUE) {
  stopifnot(inherits(W, "lppm"))
  as.owin(as.linnet(W), ..., fatal=fatal)
}

Window.lppm <- function(X, ...) { as.owin(X) }

data.lppm <- function(object) { object$X }

model.images.lppm <- local({

  model.images.lppm <- function(object, L=as.linnet(object), ...) {
    stopifnot(inherits(object, "lppm"))
    stopifnot(inherits(L, "linnet"))
    m <- model.images(object$fit, W=as.rectangle(L), ...)
    if(length(m)) {
      ## restrict images to L
      type <- if(is.hyperframe(m)) "hyperframe" else
              if(is.imlist(m)) "imlist" else
              if(is.list(m) && all(sapply(m, is.im))) "imlist" else
              stop("Internal error: model.images not understood", call.=FALSE)
      switch(type,
             imlist = {
               ## list of images: convert to list of linims
               ZL <- netmask(L, template=m[[1L]])
               m <- tolinims(m, L=L, imL=ZL)
             },
             hyperframe = {
               ## hyperframe, each column being a list of images
               ## extract columns
               rownam <- row.names(m)
               m <- as.list(m)
               ZL <- netmask(L, template=m[[1L]][[1L]])
               mm <- lapply(m, tolinims, L=L, imL=ZL)
               m <- do.call(hyperframe, mm)
               row.names(m) <- rownam
             })
    }
    return(m)
  }

  netmask <- function(L, template) {
    as.im(psp2mask(as.psp(L), xy=as.mask(template)))
  }
    
  tolinim <- function(x, L, imL) linim(L, eval.im(x * imL), restrict=FALSE)
  tolinims <- function(x, L, imL) solapply(x, tolinim, L=L, imL=imL)

  model.images.lppm
})

  
model.matrix.lppm <- function(object,
                              data=model.frame(object, na.action=NULL),
                             ..., keepNA=TRUE) {
  stopifnot(is.lppm(object))
  if(missing(data)) data <- NULL
  model.matrix(object$fit, data=data, ..., keepNA=keepNA)
}

model.frame.lppm <- function(formula, ...) {
  stopifnot(inherits(formula, "lppm"))
  model.frame(formula$fit, ...)
}

domain.lppm <- as.linnet.lppm <- function(X, ...) {
  as.linnet(X$X, ...)
}

nobs.lppm <- function(object, ...) {
  npoints(object$X)
}

is.poisson.lppm <- function(x) { is.poisson(x$fit) }

is.stationary.lppm <- function(x) { is.stationary(x$fit) }

is.multitype.lppm <- function(X, ...) { is.multitype(X$fit) }

is.marked.lppm <- function(X, ...) { is.marked(X$fit) }

vcov.lppm <- function(object, ...) {
  if(!is.poisson(object))
    stop("vcov.lppm is only implemented for Poisson models")
  vcov(object$fit, ...)
}

valid.lppm <- function(object, ...) {
  valid(object$fit, ...)
}

emend.lppm <- function(object, ...) {
  object$fit <- emend(object$fit, ...)
  return(object)
}

response.lppm <- function(object) { data.lppm(object) }

Try the spatstat.linnet package in your browser

Any scripts or data that you put into this service are public.

spatstat.linnet documentation built on Sept. 20, 2024, 5:06 p.m.