dnearneigh | R Documentation |
The function identifies neighbours of region points by Euclidean distance in the metric of the points between lower (greater than or equal to (changed from version 1.1-7)) and upper (less than or equal to) bounds, or with longlat = TRUE, by Great Circle distance in kilometers. If x
is an "sf"
object and use_s2=
is TRUE
, spherical distances in km are used.
dnearneigh(x, d1, d2, row.names = NULL, longlat = NULL, bounds=c("GE", "LE"),
use_kd_tree=TRUE, symtest=FALSE, use_s2=packageVersion("s2") > "1.0.7", k=200,
dwithin=TRUE)
x |
matrix of point coordinates, an object inheriting from SpatialPoints or an |
d1 |
lower distance bound in the metric of the points if planar coordinates, in km if in geographical coordinates |
d2 |
upper distance boundd in the metric of the points if planar coordinates, in km if in geographical coordinates |
row.names |
character vector of region ids to be added to the neighbours list as attribute |
longlat |
TRUE if point coordinates are geographical longitude-latitude decimal degrees, in which case distances are measured in kilometers; if x is a SpatialPoints object, the value is taken from the object itself, and overrides this argument if not NULL |
bounds |
character vector of length 2, default |
use_kd_tree |
default TRUE, if TRUE, use dbscan |
symtest |
Default FALSE; before release 1.1-7, TRUE - run symmetry check on output object, costly with large numbers of points. |
use_s2 |
default= |
k |
default 200, the number of closest points to consider when searching when using |
dwithin |
default TRUE, if FALSE, use |
The function returns a list of integer vectors giving the region id numbers
for neighbours satisfying the distance criteria. See card
for details of “nb” objects.
Roger Bivand Roger.Bivand@nhh.no
knearneigh
, card
columbus <- st_read(system.file("shapes/columbus.gpkg", package="spData")[1], quiet=TRUE)
coords <- st_centroid(st_geometry(columbus), of_largest_polygon=TRUE)
rn <- row.names(columbus)
k1 <- knn2nb(knearneigh(coords))
all.linked <- max(unlist(nbdists(k1, coords)))
col.nb.0.all <- dnearneigh(coords, 0, all.linked, row.names=rn)
summary(col.nb.0.all, coords)
opar <- par(no.readonly=TRUE)
plot(st_geometry(columbus), border="grey", reset=FALSE,
main=paste("Distance based neighbours 0-", format(all.linked), sep=""))
plot(col.nb.0.all, coords, add=TRUE)
par(opar)
(sfc_obj <- st_centroid(st_geometry(columbus)))
col.nb.0.all_sf <- dnearneigh(sfc_obj, 0, all.linked, row.names=rn)
all.equal(col.nb.0.all, col.nb.0.all_sf, check.attributes=FALSE)
data(state)
us48.fipsno <- read.geoda(system.file("etc/weights/us48.txt",
package="spdep")[1])
if (as.numeric(paste(version$major, version$minor, sep="")) < 19) {
m50.48 <- match(us48.fipsno$"State.name", state.name)
} else {
m50.48 <- match(us48.fipsno$"State_name", state.name)
}
xy <- as.matrix(as.data.frame(state.center))[m50.48,]
llk1 <- knn2nb(knearneigh(xy, k=1, longlat=FALSE))
(all.linked <- max(unlist(nbdists(llk1, xy, longlat=FALSE))))
ll.nb <- dnearneigh(xy, 0, all.linked, longlat=FALSE)
summary(ll.nb, xy, longlat=TRUE, scale=0.5)
gck1 <- knn2nb(knearneigh(xy, k=1, longlat=TRUE))
(all.linked <- max(unlist(nbdists(gck1, xy, longlat=TRUE))))
gc.nb <- dnearneigh(xy, 0, all.linked, longlat=TRUE)
summary(gc.nb, xy, longlat=TRUE, scale=0.5)
plot(ll.nb, xy)
plot(diffnb(ll.nb, gc.nb), xy, add=TRUE, col="red", lty=2)
title(main="Differences Euclidean/Great Circle")
#xy1 <- SpatialPoints((as.data.frame(state.center))[m50.48,],
# proj4string=CRS("+proj=longlat +ellps=GRS80"))
#gck1a <- knn2nb(knearneigh(xy1, k=1))
#(all.linked <- max(unlist(nbdists(gck1a, xy1))))
#gc.nb <- dnearneigh(xy1, 0, all.linked)
#summary(gc.nb, xy1, scale=0.5)
xy1 <- st_as_sf((as.data.frame(state.center))[m50.48,], coords=1:2,
crs=st_crs("OGC:CRS84"))
old_use_s2 <- sf_use_s2()
sf_use_s2(TRUE)
gck1b <- knn2nb(knearneigh(xy1, k=1))
system.time(o <- nbdists(gck1b, xy1))
(all.linked <- max(unlist(o)))
# use s2 brute-force dwithin_matrix approach for s2 <= 1.0.7
system.time(gc.nb.dwithin <- dnearneigh(xy1, 0, all.linked, use_s2=TRUE, dwithin=TRUE))
summary(gc.nb, xy1, scale=0.5)
# use s2 closest_edges approach s2 > 1.0.7
if (packageVersion("s2") > "1.0.7") {
(system.time(gc.nb.closest <- dnearneigh(xy1, 0, all.linked, dwithin=FALSE)))
}
if (packageVersion("s2") > "1.0.7") {
system.time(gc.nb.dwithin <- dnearneigh(xy1, 0, all.linked, use_s2=TRUE, dwithin=TRUE))
}
if (packageVersion("s2") > "1.0.7") {
summary(gc.nb.dwithin, xy1, scale=0.5)
}
if (packageVersion("s2") > "1.0.7") {
summary(gc.nb.closest, xy1, scale=0.5)
}
# use legacy symmetric brute-force approach
system.time(gc.nb.legacy <- dnearneigh(xy1, 0, all.linked, use_s2=FALSE))
summary(gc.nb, xy1, scale=0.5)
if (packageVersion("s2") > "1.0.7") all.equal(gc.nb.closest, gc.nb.dwithin, check.attributes=FALSE)
# legacy is ellipsoidal, s2 spherical, so minor differences expected
if (packageVersion("s2") > "1.0.7") all.equal(gc.nb, gc.nb.closest, check.attributes=FALSE)
all.equal(gc.nb, gc.nb.dwithin, check.attributes=FALSE)
sf_use_s2(old_use_s2)
# example of reading points with readr::read_csv() yielding a tibble
load(system.file("etc/misc/coords.rda", package="spdep"))
class(coords)
k1 <- knn2nb(knearneigh(coords, k=1))
all.linked <- max(unlist(nbdists(k1, coords)))
dnearneigh(coords, 0, all.linked)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.