Description Usage Arguments Details Value Author(s) References See Also Examples

The local spatial statistic Moran's I is calculated for each zone based on the spatial weights object used. The values returned include a Z-value, and may be used as a diagnostic tool. The statistic is:

*I_i = \frac{(x_i-\bar{x})}{{∑_{k=1}^{n}(x_k-\bar{x})^2}/(n-1)}{∑_{j=1}^{n}w_{ij}(x_j-\bar{x})}*

, and its expectation and variance are given in Anselin (1995).

1 2 3 |

`x` |
a numeric vector the same length as the neighbours list in listw |

`listw` |
a |

`zero.policy` |
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA |

`na.action` |
a function (default |

`alternative` |
a character string specifying the alternative hypothesis, must be one of greater (default), less or two.sided. |

`p.adjust.method` |
a character string specifying the probability value adjustment for multiple tests, default "none"; see |

`mlvar` |
default TRUE: values of local Moran's I are reported using the variance of the variable of interest (sum of squared deviances over n), but can be reported as the sample variance, dividing by (n-1) instead; both are used in other implementations. |

`spChk` |
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use |

`adjust.x` |
default FALSE, if TRUE, x values of observations with no neighbours are omitted in the mean of x |

The values of local Moran's I are divided by the variance (or sample variance) of the variable of interest to accord with Table 1, p. 103, and formula (12), p. 99, in Anselin (1995), rathar than his formula (7), p. 98. The variance of the local Moran statistic is taken from Sokal et al. (1998), equation 5 p. 334 and A4*, p. 351. By default, the implementation divides by n, not (n-1) in calculating the variance and higher moments.

`Ii` |
local moran statistic |

`E.Ii` |
expectation of local moran statistic |

`Var.Ii` |
variance of local moran statistic |

`Z.Ii` |
standard deviate of local moran statistic |

`Pr()` |
p-value of local moran statistic |

Roger Bivand [email protected]

Anselin, L. 1995. Local indicators of spatial association,
Geographical Analysis, 27, 93–115;
Getis, A. and Ord, J. K. 1996 Local spatial
statistics: an overview. In P. Longley and M. Batty (eds) *Spatial
analysis: modelling in a GIS environment* (Cambridge: Geoinformation
International), 261–277; Sokal, R. R, Oden, N. L. and Thomson, B. A. 1998. Local Spatial Autocorrelation in a Biological Model. Geographical Analysis, 30. 331–354.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ```
data(afcon, package="spData")
oid <- order(afcon$id)
resI <- localmoran(afcon$totcon, nb2listw(paper.nb))
printCoefmat(data.frame(resI[oid,], row.names=afcon$name[oid]),
check.names=FALSE)
hist(resI[,5])
mean(resI[,1])
sum(resI[,1])/Szero(nb2listw(paper.nb))
moran.test(afcon$totcon, nb2listw(paper.nb))
# note equality for mean() only when the sum of weights equals
# the number of observations (thanks to Juergen Symanzik)
resI <- localmoran(afcon$totcon, nb2listw(paper.nb),
p.adjust.method="bonferroni")
printCoefmat(data.frame(resI[oid,], row.names=afcon$name[oid]),
check.names=FALSE)
hist(resI[,5])
totcon <-afcon$totcon
is.na(totcon) <- sample(1:length(totcon), 5)
totcon
resI.na <- localmoran(totcon, nb2listw(paper.nb), na.action=na.exclude,
zero.policy=TRUE)
if (class(attr(resI.na, "na.action")) == "exclude") {
print(data.frame(resI.na[oid,], row.names=afcon$name[oid]), digits=2)
} else print(resI.na, digits=2)
resG <- localG(afcon$totcon, nb2listw(include.self(paper.nb)))
print(data.frame(resG[oid], row.names=afcon$name[oid]), digits=2)
``` |

spdep documentation built on April 4, 2018, 1:03 a.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.