# lee: Compute Lee's statistic In spdep: Spatial Dependence: Weighting Schemes, Statistics

 lee R Documentation

## Compute Lee's statistic

### Description

A simple function to compute Lee's L statistic for bivariate spatial data;

L(x,y) = \frac{n}{\sum_{i=1}^{n}(\sum_{j=1}^{n}w_{ij})^2} \frac{\sum_{i=1}^{n}(\sum_{j=1}^{n}w_{ij}(x_i-\bar{x})) ((\sum_{j=1}^{n}w_{ij}(y_j-\bar{y}))}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}} 

### Usage

lee(x, y, listw, n, S2, zero.policy=attr(listw, "zero.policy"), NAOK=FALSE)


### Arguments

 x a numeric vector the same length as the neighbours list in listw y a numeric vector the same length as the neighbours list in listw listw a listw object created for example by nb2listw n number of zones S2 Sum of squared sum of weights by rows. zero.policy default attr(listw, "zero.policy") as set when listw was created, if attribute not set, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA NAOK if 'TRUE' then any 'NA' or 'NaN' or 'Inf' values in x are passed on to the foreign function. If 'FALSE', the presence of 'NA' or 'NaN' or 'Inf' values is regarded as an error.

### Value

a list of

 L Lee's L statistic local L Lee's local L statistic

### Author(s)

Roger Bivand and Virgiio GÃ³mez-Rubio Virgilio.Gomez@uclm.es

### References

Lee (2001). Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I. J Geograph Syst 3: 369-385

lee.mc

### Examples

data(boston, package="spData")
lw<-nb2listw(boston.soi)

x<-boston.c$CMEDV y<-boston.c$CRIM