Description Usage Arguments Value Author(s) References See Also Examples
Calculate bootstrapped confidence intervals of coefficients of the selected predictors and generate confidence interval plots.
1 2 3 |
object |
A fitted SPLS object. |
coverage |
Coverage of confidence intervals.
|
B |
Number of bootstrap iterations. Default is 1000. |
plot.it |
Plot confidence intervals of coefficients? |
plot.fix |
If |
plot.var |
Index vector of responses (if |
K |
Number of hidden components.
Default is to use the same |
fit |
PLS algorithm for model fitting. Alternatives are
|
Invisibly returns a list with components:
cibeta |
A list with as many matrix elements as the number of responses. Each matrix element is p by 2, where i-th row of the matrix lists the upper and lower bounds of the bootstrapped confidence interval of the i-th predictor. |
betahat |
Matrix of original coefficients of the SPLS fit. |
lbmat |
Matrix of lower bounds of confidence intervals (for internal use). |
ubmat |
Matrix of upper bounds of confidence intervals (for internal use). |
Dongjun Chung, Hyonho Chun, and Sunduz Keles.
Chun H and Keles S (2010), "Sparse partial least squares for simultaneous dimension reduction and variable selection", Journal of the Royal Statistical Society - Series B, Vol. 72, pp. 3–25.
correct.spls
and spls
.
1 2 3 4 5 6 7 8 | data(mice)
# SPLS with eta=0.6 & 1 hidden components
f <- spls( mice$x, mice$y, K=1, eta=0.6 )
# Calculate confidence intervals of coefficients
ci.f <- ci.spls( f, plot.it=TRUE, plot.fix="x", plot.var=20 )
# Bootstrapped confidence intervals
cis <- ci.f$cibeta
cis[[20]] # equivalent, 'cis$1422478_a_at'
|
Sparse Partial Least Squares (SPLS) Regression and
Classification (version 2.2-3)
10 % completed...
20 % completed...
30 % completed...
40 % completed...
50 % completed...
60 % completed...
70 % completed...
80 % completed...
90 % completed...
100 % completed...
2.5% 97.5%
D2Mit274 -0.003970052 0.023560092
D2Mit17 -0.003963566 0.023294933
D2Mit106 -0.004414759 0.023867315
D2Mit194 -0.004841382 0.021994504
D2Mit263 -0.004971123 0.023814272
D2Mit51 -0.005093959 0.023262455
D2Mit49 -0.005229769 0.021756809
D2Mit229 -0.003862827 0.022523213
D2Mit148 -0.002497678 0.021722692
D5Mit348 -0.003038694 0.020173998
D5Mit75 -0.003534721 0.023448835
D5Mit267 -0.003816926 0.022685136
D5Mit259 -0.004529217 0.023886364
D5Mit9 -0.004961164 0.026057401
D5Mit240 -0.004736207 0.027361691
D5Mit136 -0.005360719 0.027098222
D8Mit249 -0.018270663 0.003446075
D8Mit211 -0.021114005 0.003050463
D8Mit113 -0.020499521 0.003261824
D9Mit206 -0.019773859 0.002414847
D9Mit2 -0.020033353 0.002504833
D9Mit21 -0.017421480 0.002141814
D9Mit207 -0.017201864 0.002529220
D9Mit8 -0.016983005 0.002392261
D9Mit15 -0.023668777 0.001924868
D9Mit18 -0.021697655 0.001661768
D15Mit174 -0.022867499 0.001920104
D15Mit136 -0.026046222 0.002208022
D15Mit63 -0.026483401 0.001640367
D15Mit107 -0.022090748 0.003185885
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.