Description Usage Arguments Value Author(s) References See Also Examples
Draw heatmap of v-fold cross-validated mean squared prediction error and return optimal eta (thresholding parameter) and K (number of hidden components).
1 2 3 |
x |
Matrix of predictors. |
y |
Vector or matrix of responses. |
fold |
Number of cross-validation folds. Default is 10-folds. |
K |
Number of hidden components. |
eta |
Thresholding parameter. |
kappa |
Parameter to control the effect of
the concavity of the objective function
and the closeness of original and surrogate direction vectors.
|
select |
PLS algorithm for variable selection.
Alternatives are |
fit |
PLS algorithm for model fitting. Alternatives are
|
scale.x |
Scale predictors by dividing each predictor variable by its sample standard deviation? |
scale.y |
Scale responses by dividing each response variable by its sample standard deviation? |
plot.it |
Draw heatmap of cross-validated mean squared prediction error? |
Invisibly returns a list with components:
mspemat |
Matrix of cross-validated mean squared prediction error.
Rows correspond to |
eta.opt |
Optimal |
K.opt |
Optimal |
Dongjun Chung, Hyonho Chun, and Sunduz Keles.
Chun H and Keles S (2010), "Sparse partial least squares for simultaneous dimension reduction and variable selection", Journal of the Royal Statistical Society - Series B, Vol. 72, pp. 3–25.
print.spls
, plot.spls
, predict.spls
,
and coef.spls
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | data(yeast)
set.seed(1)
# MSPE plot. eta is searched between 0.1 and 0.9 and
# number of hidden components is searched between 1 and 10
## Not run:
cv <- cv.spls(yeast$x, yeast$y, K = c(1:10), eta = seq(0.1,0.9,0.1))
# Optimal eta and K
cv$eta.opt
cv$K.opt
(spls(yeast$x, yeast$y, eta=cv$eta.opt, K=cv$K.opt))
## End(Not run)
|
Sparse Partial Least Squares (SPLS) Regression and
Classification (version 2.2-3)
eta = 0.1
eta = 0.2
eta = 0.3
eta = 0.4
eta = 0.5
eta = 0.6
eta = 0.7
eta = 0.8
eta = 0.9
Optimal parameters: eta = 0.6, K = 8
[1] 0.6
[1] 8
Sparse Partial Least Squares for multivariate responses
----
Parameters: eta = 0.6, K = 8, kappa = 0.5
PLS algorithm:
pls2 for variable selection, simpls for model fitting
SPLS chose 56 variables among 106 variables
Selected variables:
ACE2_YPD ARG80_YPD ARG81_YPD ASH1_YPD AZF1_YPD
BAS1_YPD CBF1_YPD CHA4_YPD CRZ1_YPD FHL1_YPD
FKH1_YPD FKH2_YPD FZF1_YPD GAT1_YPD GAT3_YPD
GCN4_YPD GCR2_YPD GLN3_YPD HAA1_YPD HAP2_YPD
HAP5_YPD HIR1_YPD HIR2_YPD IME4_YPD INO4_YPD
A1..MATA1._YPD MBP1_YPD MCM1_YPD MET4_YPD MSN2_YPD
NDD1_YPD NRG1_YPD PHD1_YPD PHO2_YPD PUT3_YPD
RCS1_YPD REB1_YPD RFX1_YPD RIM101_YPD RME1_YPD
RTG1_YPD RTG3_YPD SIP4_YPD SOK2_YPD STB1_YPD
STE12_YPD STP2_YPD SWI4_YPD SWI5_YPD SWI6_YPD
THI2_YPD YAP1_YPD YAP6_YPD YAP7_YPD YFL044C_YPD
YJL206C_YPD
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.