print.splsda: Print function for a SPLSDA object

Description Usage Arguments Value Author(s) References See Also Examples

Description

Print out SPLSDA fits, the number and the list of selected predictors.

Usage

1
2
## S3 method for class 'splsda'
print( x, ... )

Arguments

x

A fitted SPLSDA object.

...

Additonal arguments for generic print.

Value

NULL.

Author(s)

Dongjun Chung and Sunduz Keles.

References

Chung D and Keles S (2010), "Sparse partial least squares classification for high dimensional data", Statistical Applications in Genetics and Molecular Biology, Vol. 9, Article 17.

See Also

predict.splsda and coef.splsda.

Examples

1
2
3
4
data(prostate)
# SPLSDA with eta=0.8 & 3 hidden components
f <- splsda( prostate$x, prostate$y, K=3, eta=0.8, scale.x=FALSE )
print(f)

Example output

Sparse Partial Least Squares (SPLS) Regression and
Classification (version 2.2-2)


Sparse Partial Least Squares Discriminant Analysis
----
Parameters: eta = 0.8, K = 3
Classifier: Linear Discriminant Analysis (LDA)

SPLSDA chose 44 variables among 6033 variables

Selected variables: 
54	105	118	126	127	
292	306	308	526	535	
665	1455	1839	2425	2619	
3006	3032	3118	3183	3300	
3423	3587	3665	3743	3826	
3858	3950	4091	4155	4288	
4353	4448	4498	4701	5016	
5214	5248	5249	5343	5344	
5742	5784	5808	5983	

spls documentation built on May 6, 2019, 1:09 a.m.