Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/predict.splsda.R
Make predictions or extract coefficients from a fitted SPLSDA object.
1 2 3 4 5 |
object |
A fitted SPLSDA object. |
newx |
If |
type |
If |
fit.type |
If |
... |
Any arguments for |
Users can input either only selected variables or all variables for newx
.
Matrix of coefficient estimates if type="coefficient"
.
Matrix of predicted responses if type="fit"
(responses will be predicted classes if fit.type="class"
or predicted probabilities if fit.type="response"
).
Dongjun Chung and Sunduz Keles.
Chung D and Keles S (2010), "Sparse partial least squares classification for high dimensional data", Statistical Applications in Genetics and Molecular Biology, Vol. 9, Article 17.
1 2 3 4 5 6 7 8 |
Sparse Partial Least Squares (SPLS) Regression and
Classification (version 2.2-2)
x54 x105 x118 x126 x127 x292
-0.079858427 0.062790549 0.200050675 0.151102721 0.125336124 0.097054753
x306 x308 x526 x535 x665 x1455
0.072054245 -0.035031567 0.011647612 -0.033456449 -0.003465278 0.111368189
x1839 x2425 x2619 x3006 x3032 x3118
0.344341295 0.222652673 0.502701945 0.118372469 0.037222124 0.209313921
x3183 x3300 x3423 x3587 x3665 x3743
0.070443118 -0.122593897 0.402374565 -0.049870115 0.076675783 -0.057151555
x3826 x3858 x3950 x4091 x4155 x4288
-0.166120994 -0.008313119 -0.002198880 0.024707507 0.213824118 -0.379608007
x4353 x4448 x4498 x4701 x5016 x5214
0.034728924 0.234539768 0.072599251 -0.406717619 -0.417611040 -0.144379126
x5248 x5249 x5343 x5344 x5742 x5784
0.018682757 0.088453884 0.064227582 -0.314783831 -0.137700748 -0.137121968
x5808 x5983
0.130724156 -0.287282180
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
Levels: 0 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.