Description Usage Arguments Details Value Author(s) References See Also Examples
Fit a SPLS regression model.
1 2 |
x |
Matrix of predictors. |
y |
Vector or matrix of responses. |
K |
Number of hidden components. |
eta |
Thresholding parameter. |
kappa |
Parameter to control the effect of
the concavity of the objective function
and the closeness of original and surrogate direction vectors.
|
select |
PLS algorithm for variable selection.
Alternatives are |
fit |
PLS algorithm for model fitting. Alternatives are
|
scale.x |
Scale predictors by dividing each predictor variable by its sample standard deviation? |
scale.y |
Scale responses by dividing each response variable by its sample standard deviation? |
eps |
An effective zero. Default is 1e-4. |
maxstep |
Maximum number of iterations when fitting direction vectors. Default is 100. |
trace |
Print out the progress of variable selection? |
The SPLS method is described in detail in Chun and Keles (2010).
SPLS directly imposes sparsity on the dimension reduction step of PLS
in order to achieve accurate prediction and variable selection simultaneously.
The option select
refers to the PLS algorithm for variable selection.
The option fit
refers to the PLS algorithm for model fitting
and spls
utilizes algorithms offered by the pls package for this purpose.
See help files of the function plsr
in the pls package for more details.
The user should install the pls package before using spls functions.
The choices for select
and fit
are independent.
A spls object is returned. print, plot, predict, coef, ci.spls, coefplot.spls methods use this object.
Dongjun Chung, Hyonho Chun, and Sunduz Keles.
Chun H and Keles S (2010), "Sparse partial least squares for simultaneous dimension reduction and variable selection", Journal of the Royal Statistical Society - Series B, Vol. 72, pp. 3–25.
print.spls
, plot.spls
, predict.spls
,
coef.spls
, ci.spls
, and coefplot.spls
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
Sparse Partial Least Squares (SPLS) Regression and
Classification (version 2.2-1)
Sparse Partial Least Squares for multivariate responses
----
Parameters: eta = 0.7, K = 8, kappa = 0.5
PLS algorithm:
pls2 for variable selection, simpls for model fitting
SPLS chose 28 variables among 106 variables
Selected variables:
ACE2_YPD ARG80_YPD ASH1_YPD AZF1_YPD CRZ1_YPD
FHL1_YPD FKH2_YPD GAT3_YPD GCR1_YPD HAL9_YPD
HAP2_YPD HIR1_YPD IME4_YPD MBP1_YPD MCM1_YPD
MET4_YPD MSN2_YPD NDD1_YPD PHD1_YPD RFX1_YPD
RME1_YPD RTG3_YPD SIP4_YPD STE12_YPD SWI4_YPD
SWI5_YPD SWI6_YPD YAP5_YPD
ABF1_YPD ACE2_YPD ADR1_YPD ARG80_YPD ARG81_YPD
0.0000000000 0.0921735981 0.0000000000 -0.0757267511 0.0000000000
ARO80_YPD ASH1_YPD AZF1_YPD BAS1_YPD CAD1_YPD
0.0000000000 0.0004722267 0.0535732585 0.0000000000 0.0000000000
CBF1_YPD CHA4_YPD CIN5_YPD CRZ1_YPD CUP9_YPD
0.0000000000 0.0000000000 0.0000000000 0.0221795965 0.0000000000
DAL81_YPD DAL82_YPD DIG1_YPD DOT6_YPD FHL1_YPD
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0319323856
FKH1_YPD FKH2_YPD FZF1_YPD GAL4_YPD GAT1_YPD
0.0000000000 -0.0567580194 0.0000000000 0.0000000000 0.0000000000
GAT3_YPD GCN4_YPD GCR1_YPD GCR2_YPD GLN3_YPD
-0.0979477385 0.0000000000 -0.0103847979 0.0000000000 0.0000000000
GTS1_YPD HAA1_YPD HAL9_YPD HAP2_YPD HAP3_YPD
0.0000000000 0.0000000000 -0.0461270465 -0.0059927574 0.0000000000
HAP4_YPD HAP5_YPD HIR1_YPD HIR2_YPD HMS1_YPD
0.0000000000 0.0000000000 -0.1423007595 0.0000000000 0.0000000000
HSF1_YPD IME4_YPD INO2_YPD INO4_YPD IXR1_YPD
0.0000000000 0.0825866466 0.0000000000 0.0000000000 0.0000000000
LEU3_YPD MAC1_YPD MAL13_YPD MAL33_YPD A1..MATA1._YPD
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
MBP1_YPD MCM1_YPD MET31_YPD MET4_YPD MIG1_YPD
-0.0989846456 0.0177376192 0.0000000000 0.0040401579 0.0000000000
MOT3_YPD MSN1_YPD MSN2_YPD MSN4_YPD MSS11_YPD
0.0000000000 0.0000000000 -0.0522722014 0.0000000000 0.0000000000
NDD1_YPD NRG1_YPD PDR1_YPD PHD1_YPD PHO2_YPD
-0.0762039190 0.0000000000 0.0000000000 0.0450622380 0.0000000000
PHO4_YPD PUT3_YPD RAP1_YPD RCS1_YPD REB1_YPD
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
RFX1_YPD RGM1_YPD RGT1_YPD RIM101_YPD RLM1_YPD
0.0376175987 0.0000000000 0.0000000000 0.0000000000 0.0000000000
RME1_YPD ROX1_YPD RPH1_YPD RTG1_YPD RTG3_YPD
0.0352009681 0.0000000000 0.0000000000 0.0000000000 -0.0270656647
SFL1_YPD SFP1_YPD SIP4_YPD SKN7_YPD SKO1_YPD
0.0000000000 0.0000000000 -0.0609970553 0.0000000000 0.0000000000
SMP1_YPD SOK2_YPD STB1_YPD STE12_YPD STP1_YPD
0.0000000000 0.0000000000 0.0000000000 0.2914620255 0.0000000000
STP2_YPD SUM1_YPD SWI4_YPD SWI5_YPD SWI6_YPD
0.0000000000 0.0000000000 -0.0989567780 0.0136874415 -0.1240524590
THI2_YPD UGA3_YPD YAP1_YPD YAP3_YPD YAP5_YPD
0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0564389410
YAP6_YPD YAP7_YPD YFL044C_YPD YJL206C_YPD ZAP1_YPD
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
ZMS1_YPD
0.0000000000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.