Description Usage Arguments Details Value Author(s) References See Also Examples
Fit a SPLSDA classification model.
1 2 |
x |
Matrix of predictors. |
y |
Vector of class indices. |
K |
Number of hidden components. |
eta |
Thresholding parameter. |
kappa |
Parameter to control the effect of
the concavity of the objective function
and the closeness of original and surrogate direction vectors.
|
classifier |
Classifier used in the second step of SPLSDA.
Alternatives are |
scale.x |
Scale predictors by dividing each predictor variable by its sample standard deviation? |
... |
Other parameters to be passed through to |
The SPLSDA method is described in detail in Chung and Keles (2010).
SPLSDA provides a two-stage approach for PLS-based classification with variable selection,
by directly imposing sparsity on the dimension reduction step of PLS
using sparse partial least squares (SPLS) proposed in Chun and Keles (2010).
y
is assumed to have numerical values, 0, 1, ..., G,
where G is the number of classes subtracted by one.
The option classifier
refers to the classifier used in the second step of SPLSDA
and splsda
utilizes algorithms offered by MASS and nnet packages
for this purpose.
If classifier="logistic"
, then either logistic regression or multinomial regression is used.
Linear discriminant analysis (LDA) is used if classifier="lda"
.
splsda
also utilizes algorithms offered by the pls package for fitting spls
.
The user should install pls, MASS and nnet packages before using splsda
functions.
A splsda
object is returned.
print, predict, coef methods use this object.
Dongjun Chung and Sunduz Keles.
Chung D and Keles S (2010), "Sparse partial least squares classification for high dimensional data", Statistical Applications in Genetics and Molecular Biology, Vol. 9, Article 17.
Chun H and Keles S (2010), "Sparse partial least squares for simultaneous dimension reduction and variable selection", Journal of the Royal Statistical Society - Series B, Vol. 72, pp. 3–25.
print.splsda
, predict.splsda
, and coef.splsda
.
1 2 3 4 5 6 7 |
Sparse Partial Least Squares (SPLS) Regression and
Classification (version 2.2-2)
Sparse Partial Least Squares Discriminant Analysis
----
Parameters: eta = 0.8, K = 3
Classifier: Linear Discriminant Analysis (LDA)
SPLSDA chose 44 variables among 6033 variables
Selected variables:
54 105 118 126 127
292 306 308 526 535
665 1455 1839 2425 2619
3006 3032 3118 3183 3300
3423 3587 3665 3743 3826
3858 3950 4091 4155 4288
4353 4448 4498 4701 5016
5214 5248 5249 5343 5344
5742 5784 5808 5983
x54 x105 x118 x126 x127 x292
-0.079858427 0.062790549 0.200050675 0.151102721 0.125336124 0.097054753
x306 x308 x526 x535 x665 x1455
0.072054245 -0.035031567 0.011647612 -0.033456449 -0.003465278 0.111368189
x1839 x2425 x2619 x3006 x3032 x3118
0.344341295 0.222652673 0.502701945 0.118372469 0.037222124 0.209313921
x3183 x3300 x3423 x3587 x3665 x3743
0.070443118 -0.122593897 0.402374565 -0.049870115 0.076675783 -0.057151555
x3826 x3858 x3950 x4091 x4155 x4288
-0.166120994 -0.008313119 -0.002198880 0.024707507 0.213824118 -0.379608007
x4353 x4448 x4498 x4701 x5016 x5214
0.034728924 0.234539768 0.072599251 -0.406717619 -0.417611040 -0.144379126
x5248 x5249 x5343 x5344 x5742 x5784
0.018682757 0.088453884 0.064227582 -0.314783831 -0.137700748 -0.137121968
x5808 x5983
0.130724156 -0.287282180
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.