Nothing
get_model_stats_spglm <- function(cov_est_object, data_object, estmethod) {
# making a covariance matrix list
cov_matrix_list <- get_cov_matrix_list(
cov_est_object$spcov_params_val,
cov_est_object$dist_matrix_list,
cov_est_object$randcov_params_val,
data_object$randcov_list,
data_object$partition_list,
diagtol = data_object$diagtol
)
# find model components
X <- do.call("rbind", data_object$X_list)
y <- do.call("rbind", data_object$y_list)
# eigen products
if (data_object$parallel) {
cluster_list <- lapply(seq_along(cov_matrix_list), function(l) {
cluster_list_element <- list(
c = cov_matrix_list[[l]],
x = data_object$X_list[[l]],
y = data_object$y_list[[l]],
o = data_object$ones_list[[l]]
)
})
eigenprods_list <- parallel::parLapply(data_object$cl, cluster_list, get_eigenprods_glm_parallel)
names(eigenprods_list) <- names(cov_matrix_list)
} else {
eigenprods_list <- mapply(
c = cov_matrix_list, x = data_object$X_list, y = data_object$y_list, o = data_object$ones_list,
function(c, x, y, o) get_eigenprods_glm(c, x, y, o),
SIMPLIFY = FALSE
)
}
SigInv_list <- lapply(eigenprods_list, function(x) x$SigInv)
SigInv <- Matrix::bdiag(SigInv_list)
SigInv_X <- do.call("rbind", lapply(eigenprods_list, function(x) x$SigInv_X))
# cov adjustment code
# get cov beta hat (Xt Sig^-1 X)^-1 and beta hat (Xt Sig^-1 X)^-1 Xt Sig^-1 y
invcov_betahat_list <- lapply(eigenprods_list, function(x) crossprod(x$SqrtSigInv_X, x$SqrtSigInv_X))
invcov_betahat_sum <- Reduce("+", invcov_betahat_list)
cov_betahat_noadjust <- chol2inv(chol(forceSymmetric(invcov_betahat_sum)))
cov_betahat_noadjust_list <- rep(list(cov_betahat_noadjust), times = length(invcov_betahat_list))
# find dispersion
dispersion <- as.vector(cov_est_object$dispersion_params_val) # take class away
# newton rhapson
w_and_H <- get_w_and_H_spglm(data_object, dispersion,
SigInv_list, SigInv_X, cov_betahat_noadjust,
invcov_betahat_sum, estmethod,
ret_mHInv = TRUE
)
w <- as.vector(w_and_H$w)
# H <- w_and_H$H
# put w in eigenprods
w_list <- split(w, sort(data_object$local_index))
Xt_SigInv_w_list <- mapply(
x = eigenprods_list, w = w_list,
function(x, w) crossprod(x$SigInv_X, w),
SIMPLIFY = FALSE
)
betahat_list <- mapply(
l = cov_betahat_noadjust_list, r = Xt_SigInv_w_list,
function(l, r) l %*% r,
SIMPLIFY = FALSE
)
betahat <- as.numeric(cov_betahat_noadjust %*%
Reduce("+", Xt_SigInv_w_list))
names(betahat) <- colnames(data_object$X_list[[1]])
cov_betahat <- cov_betahat_adjust(
invcov_betahat_list,
betahat_list, betahat,
eigenprods_list, data_object,
cov_est_object$spcov_params_val,
cov_est_object$randcov_params_val,
cov_betahat_noadjust, data_object$var_adjust
)
cov_betahat <- as.matrix(cov_betahat)
wts_beta <- tcrossprod(cov_betahat, SigInv_X)
betawtsvarw <- wts_beta %*% w_and_H$mHInv %*% t(wts_beta)
cov_betahat_uncorrected <- cov_betahat # save uncorrected cov beta hat
rownames(cov_betahat_uncorrected) <- colnames(data_object$X_list[[1]])
colnames(cov_betahat_uncorrected) <- colnames(data_object$X_list[[1]])
cov_betahat <- as.matrix(cov_betahat + betawtsvarw)
rownames(cov_betahat) <- colnames(data_object$X_list[[1]])
colnames(cov_betahat) <- colnames(data_object$X_list[[1]])
# return coefficients
coefficients <- get_coefficients_glm(
betahat, cov_est_object$spcov_params_val,
cov_est_object$dispersion_params_val, cov_est_object$randcov_params_val
)
# return fitted
fitted <- get_fitted_spglm(
w_list, betahat, cov_est_object$spcov_params_val, data_object,
eigenprods_list, cov_est_object$dist_matrix_list,
cov_est_object$randcov_params_val
)
# return hat values
hatvalues <- get_hatvalues_glm(w, X, data_object, dispersion)
# return deviance i
deviance_i <- get_deviance_glm(data_object$family, y, fitted$response, data_object$size, dispersion)
deviance_i <- pmax(deviance_i, 0) # sometimes numerical instability can cause these to be slightly negative
# storing relevant products
SigInv_X_null <- do.call("rbind", lapply(eigenprods_list, function(x) x$SigInv_ones))
## lower chol %*% X
SqrtSigInv_X_null <- do.call("rbind", lapply(eigenprods_list, function(x) x$SqrtSigInv_ones))
# covariance of beta hat
## t(X) %*% sigma_inverse %*% X
Xt_SigInv_X_null <- crossprod(SqrtSigInv_X_null, SqrtSigInv_X_null)
## t(X) %*% sigma_inverse %*% X)^(-1)
Xt_SigInv_X_upchol_null <- chol(Xt_SigInv_X_null)
cov_betahat_null <- chol2inv(Xt_SigInv_X_upchol_null)
# newton rhapson
w_and_H_null <- get_w_and_H_spglm(
data_object, dispersion,
SigInv_list, SigInv_X_null, cov_betahat_null, Xt_SigInv_X_null, estmethod
)
w_null <- as.vector(w_and_H_null$w)
fitted_null <- get_fitted_null(w_null, data_object)
# return deviance i
deviance_i_null <- get_deviance_glm(data_object$family, y, fitted_null, data_object$size, dispersion)
deviance_i_null <- pmax(deviance_i_null, 0) # sometimes numerical instability can cause these to be slightly non-negative
deviance <- sum(deviance_i)
deviance_null <- sum(deviance_i_null)
pseudoR2 <- as.numeric(1 - deviance / deviance_null)
# should always be non-negative
pseudoR2 <- pmax(0, pseudoR2)
# set null model R2 equal to zero (no covariates)
if (length(labels(terms(data_object$formula))) == 0) {
pseudoR2 <- 0
}
# return residuals
residuals <- get_residuals_glm(w, y, data_object, deviance_i, hatvalues, dispersion)
# return cooks distance
cooks_distance <- get_cooks_distance_glm(residuals, hatvalues, data_object$p)
# return variance covariance matrices
vcov <- get_vcov_glm(cov_betahat, cov_betahat_uncorrected) # note first argument is the adjusted one
# reorder relevant quantities
## fitted
fitted$response <- fitted$response[order(data_object$order)]
names(fitted$response) <- data_object$observed_index
fitted$link <- fitted$link[order(data_object$order)]
names(fitted$link) <- data_object$observed_index
hatvalues <- hatvalues[order(data_object$order)]
names(hatvalues) <- data_object$observed_index
residuals$response <- residuals$response[order(data_object$order)]
names(residuals$response) <- data_object$observed_index
residuals$deviance <- residuals$deviance[order(data_object$order)]
names(residuals$deviance) <- data_object$observed_index
residuals$pearson <- residuals$pearson[order(data_object$order)]
names(residuals$pearson) <- data_object$observed_index
residuals$standardized <- residuals$standardized[order(data_object$order)]
names(residuals$standardized) <- data_object$observed_index
cooks_distance <- cooks_distance[order(data_object$order)]
names(cooks_distance) <- data_object$observed_index
y <- y[order(data_object$order)]
if (is.null(data_object$size)) {
size <- NULL
} else {
size <- data_object$size[order(data_object$order)]
}
# return npar
npar <- sum(unlist(lapply(cov_est_object$is_known, function(x) length(x) - sum(x)))) # could do sum(!x$is_known)
# return list
list(
coefficients = coefficients,
fitted = fitted,
hatvalues = hatvalues,
residuals = residuals,
cooks_distance = cooks_distance,
vcov = vcov,
deviance = deviance,
pseudoR2 = pseudoR2,
npar = npar,
w = w,
y = y, # problems with model.response later
size = size
)
}
get_model_stats_spgautor <- function(cov_est_object, data_object, estmethod) {
# cov_est_object$randcov_params_val is NULL if not added so won't affect downstream calculations
# when random effects are not used
cov_matrix_val <- cov_matrix(
cov_est_object$spcov_params_val, cov_est_object$dist_matrix_list,
cov_est_object$randcov_params_val, data_object$randcov_Zs, data_object$partition_matrix, data_object$M
)
X <- data_object$X
y <- data_object$y
cov_matrix_obs_val <- cov_matrix_val[data_object$observed_index, data_object$observed_index, drop = FALSE]
# getting cholesky products
eigenprods <- get_eigenprods_glm(cov_matrix_obs_val, data_object$X, data_object$y, data_object$ones)
SigInv <- eigenprods$SigInv
# finding relevant quantities for likelihood
SigInv_X <- SigInv %*% data_object$X
Xt_SigInv_X <- crossprod(data_object$X, SigInv_X)
Xt_SigInv_X_upchol <- chol(forceSymmetric(Xt_SigInv_X))
cov_betahat <- chol2inv(Xt_SigInv_X_upchol)
# find dispersion
dispersion <- as.vector(cov_est_object$dispersion_params_val) # take class away
# newton rhapson
w_and_H <- get_w_and_H_spgautor(data_object, dispersion,
SigInv, SigInv_X, cov_betahat, Xt_SigInv_X, estmethod,
ret_mHInv = TRUE
)
w <- as.vector(w_and_H$w) # remember this is w - offset so must add offset in relevant places later to match glm
betahat <- as.numeric(tcrossprod(cov_betahat, SigInv_X) %*% w)
names(betahat) <- colnames(data_object$X)
cov_betahat <- as.matrix(cov_betahat)
wts_beta <- tcrossprod(cov_betahat, SigInv_X)
betawtsvarw <- wts_beta %*% w_and_H$mHInv %*% t(wts_beta)
cov_betahat_uncorrected <- cov_betahat # save uncorrected cov beta hat
rownames(cov_betahat_uncorrected) <- colnames(data_object$X)
colnames(cov_betahat_uncorrected) <- colnames(data_object$X)
cov_betahat <- as.matrix(cov_betahat + betawtsvarw)
rownames(cov_betahat) <- colnames(data_object$X)
colnames(cov_betahat) <- colnames(data_object$X)
# return coefficients
coefficients <- get_coefficients_glm(
betahat, cov_est_object$spcov_params_val,
cov_est_object$dispersion_params_val, cov_est_object$randcov_params_val
)
# return fitted
fitted <- get_fitted_spgautor(
w, betahat, cov_est_object$spcov_params_val, data_object, eigenprods,
cov_est_object$randcov_params_val
)
# return hat values
hatvalues <- get_hatvalues_glm(w, X, data_object, dispersion)
# return deviance i
deviance_i <- get_deviance_glm(data_object$family, y, fitted$response, data_object$size, dispersion)
deviance_i <- pmax(deviance_i, 0) # sometimes numerical instability can cause these to be slightly non-negative
# storing relevant products
SigInv_X_null <- eigenprods$SigInv_ones
## lower chol %*% X
SqrtSigInv_X_null <- eigenprods$SqrtSigInv_ones
# covariance of beta hat
## t(X) %*% sigma_inverse %*% X
Xt_SigInv_X_null <- crossprod(SqrtSigInv_X_null, SqrtSigInv_X_null)
## t(X) %*% sigma_inverse %*% X)^(-1)
Xt_SigInv_X_upchol_null <- chol(Xt_SigInv_X_null)
cov_betahat_null <- chol2inv(Xt_SigInv_X_upchol_null)
# newton rhapson
w_and_H_null <- get_w_and_H_spgautor(
data_object, dispersion,
SigInv, SigInv_X_null, cov_betahat_null, Xt_SigInv_X_null, estmethod
)
w_null <- as.vector(w_and_H_null$w)
fitted_null <- get_fitted_null(w_null, data_object)
# return deviance i
deviance_i_null <- get_deviance_glm(data_object$family, y, fitted_null, data_object$size, dispersion)
deviance_i_null <- pmax(deviance_i_null, 0) # sometimes numerical instability can cause these to be slightly non-negative
deviance <- sum(deviance_i)
deviance_null <- sum(deviance_i_null)
pseudoR2 <- as.numeric(1 - deviance / deviance_null)
# should always be non-negative
pseudoR2 <- pmax(0, pseudoR2)
# set null model R2 equal to zero (no covariates)
if (length(labels(terms(data_object$formula))) == 0) {
pseudoR2 <- 0
}
# return residuals
residuals <- get_residuals_glm(w, y, data_object, deviance_i, hatvalues, dispersion)
# return cooks distance
cooks_distance <- get_cooks_distance_glm(residuals, hatvalues, data_object$p)
# give names
names(fitted$response) <- data_object$observed_index
names(fitted$link) <- data_object$observed_index
names(hatvalues) <- data_object$observed_index
names(residuals$response) <- data_object$observed_index
names(residuals$deviance) <- data_object$observed_index
names(residuals$pearson) <- data_object$observed_index
names(residuals$standardized) <- data_object$observed_index
names(cooks_distance) <- data_object$observed_index
# return variance covariance matrices
vcov <- get_vcov_glm(cov_betahat, cov_betahat_uncorrected) # note first argument is the adjusted one
# return npar
npar <- sum(unlist(lapply(cov_est_object$is_known, function(x) length(x) - sum(x)))) # could do sum(!x$is_known)
# return list
list(
coefficients = coefficients,
fitted = fitted,
hatvalues = hatvalues,
residuals = residuals,
cooks_distance = cooks_distance,
vcov = vcov,
deviance = deviance,
pseudoR2 = pseudoR2,
npar = npar,
w = w,
y = y,
size = data_object$size
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.