Description Usage Arguments Value Examples
Nonparametric empirical Bayes classifier without annotations; prediction
1 | neb.predict(newX, neb, P = NULL, cores = 1)
|
newX |
n x p matrix of additively coded genotypes to be predicted; IMPORTANT: must be coded relative to the same allele as in the cases and controls |
neb |
output of neb.train() |
P |
prevalence of cases in the testing set; if NULL, P is taken from the train object |
cores |
number of cores to use |
ll |
2 x p matrix of log-likelihoods, first row is from controls |
score |
risk score |
class |
predicted class, 0=control, 1=case |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | p <- 1000; ## number of snps
I <- rep(0,p); I[1:10] <- 1; ## which snps are causal
set.seed(1); pi0 <- runif(p,0.1,0.5); ## control minor allele frequencies
set.seed(1); ors <- runif(sum(I),-1,1); ## odds ratios
pi1 <- pi0;
pi1[I==1] <- expit(ors+logit(pi0[I==1]));
## training data
n0 <- 100; ## number of controls
X0 <- t(replicate(n0,rbinom(p,2,pi0))); ## controls
n1 <- 50; ## number of cases
X1 <- t(replicate(n1,rbinom(p,2,pi1))); ## cases
neb <- neb.train(colMeans(X0)/2,colMeans(X1)/2,n0,n1,d=c(20,25));
## testing data
newX <- rbind(t(replicate(n0,rbinom(p,2,pi0))),
t(replicate(n1,rbinom(p,2,pi1))));
newY <- c(rep(0,n0),rep(1,n1));
Yhat <- neb.predict(newX,neb);
mean(abs(newY-Yhat$class));
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.