Nothing
#' @import quantreg
#' @import SparseM
#' @importFrom stats optim
#' @importFrom stats qnorm
#' @importFrom stats quantile
#' @importFrom stats time
#' @importFrom methods as
#' @importFrom methods new
getLowerUpperRSTR <- function(m, confidence) {
confidence <- sort(union(confidence, 1 - confidence))
lu <- matrix(0, ncol(m), length(confidence))
for (j in 1:ncol(m)) {
lu[j, ] <- quantile(m[, j], confidence, names = FALSE)
}
return(list(
lower = lu[, 1:(ncol(lu) / 2), drop = FALSE],
upper = lu[, (ncol(lu) / 2 + 1):ncol(lu), drop = FALSE]
))
}
block_bootstrap <- function(
residuals,
n = length(residuals),
block_length = NULL
) {
if (is.null(block_length)) {
block_length <- max(floor(n^(1 / 3)), 1)
}
num_blocks <- ceiling(n / block_length)
start_indices <- sample(seq_len(n), size = num_blocks, replace = TRUE)
block_offsets <- rep(seq_len(block_length) - 1, times = num_blocks)
expanded_starts <- rep(start_indices, each = block_length)
indices <- ((expanded_starts + block_offsets) - 1) %% n + 1
result <- residuals[indices]
if (length(result) > n) {
result <- result[1:n]
}
return(result)
}
#' @title Robust STR decomposition
#' @description Robust Seasonal-Trend decomposition of time series data using Regression (robust version of \code{\link{STRmodel}}).
#' @seealso \code{\link{STRmodel}} \code{\link{STR}}
#' @inheritParams data
#' @inheritParams predictors
#' @inheritParams strDesign
#' @inheritParams lambdas
#' @inheritParams confidence
#' @inheritParams nMCIter
#' @inheritParams control
#' @inheritParams reportDimensionsOnly
#' @inheritParams trace
#' @return A structure containing input and output data.
#' It is an \strong{S3} class \code{STR}, which is a list with the following components:
#' \itemize{
#' \item \strong{output} -- contains decomposed data. It is a list of three components:
#' \itemize{
#' \item \strong{predictors} -- a list of components where each component
#' corresponds to the input predictor. Every such component is a list containing the following:
#' \itemize{
#' \item \strong{data} -- fit/forecast for the corresponding predictor (trend, seasonal component, flexible or seasonal predictor).
#' \item \strong{beta} -- beta coefficients of the fit of the coresponding predictor.
#' \item \strong{lower} -- optional (if requested) matrix of lower bounds of confidence intervals.
#' \item \strong{upper} -- optional (if requested) matrix of upper bounds of confidence intervals.
#' }
#' \item \strong{random} -- a list with one component \strong{data}, which contains residuals of the model fit.
#' \item \strong{forecast} -- a list with two components:
#' \itemize{
#' \item \strong{data} -- fit/forecast for the model.
#' \item \strong{beta} -- beta coefficients of the fit.
#' \item \strong{lower} -- optional (if requested) matrix of lower bounds of confidence intervals.
#' \item \strong{upper} -- optional (if requested) matrix of upper bounds of confidence intervals.
#' }
#' }
#' \item \strong{input} -- input parameters and lambdas used for final calculations.
#' \itemize{
#' \item \strong{data} -- input data.
#' \item \strong{predictors} - input predictors.
#' \item \strong{lambdas} -- smoothing parameters used for final calculations (same as input lambdas for STR method).
#' }
#' \item \strong{method} -- always contains string \code{"RSTRmodel"} for this function.
#' }
#' @references Dokumentov, A., and Hyndman, R.J. (2022)
#' STR: Seasonal-Trend decomposition using Regression,
#' \emph{INFORMS Journal on Data Science}, 1(1), 50-62.
#' \url{https://robjhyndman.com/publications/str/}
#' @examples
#' \donttest{
#' n <- 70
#' trendSeasonalStructure <- list(segments = list(c(0, 1)), sKnots = list(c(1, 0)))
#' ns <- 5
#' seasonalStructure <- list(
#' segments = list(c(0, ns)),
#' sKnots = c(as.list(1:(ns - 1)), list(c(ns, 0)))
#' )
#' seasons <- (0:(n - 1)) %% ns + 1
#' trendSeasons <- rep(1, length(seasons))
#' times <- seq_along(seasons)
#' data <- seasons + times / 4
#' set.seed(1234567890)
#' data <- data + rnorm(length(data), 0, 0.2)
#' data[20] <- data[20] + 3
#' data[50] <- data[50] - 5
#' plot(times, data, type = "l")
#' timeKnots <- times
#' trendData <- rep(1, n)
#' seasonData <- rep(1, n)
#' trend <- list(
#' data = trendData, times = times, seasons = trendSeasons,
#' timeKnots = timeKnots, seasonalStructure = trendSeasonalStructure, lambdas = c(1, 0, 0)
#' )
#' season <- list(
#' data = seasonData, times = times, seasons = seasons,
#' timeKnots = timeKnots, seasonalStructure = seasonalStructure, lambdas = c(1, 0, 1)
#' )
#' predictors <- list(trend, season)
#' rstr <- RSTRmodel(data, predictors, confidence = 0.8)
#' plot(rstr)
#' }
#' @author Alexander Dokumentov
#' @export
RSTRmodel <- function(
data,
predictors = NULL,
strDesign = NULL,
lambdas = NULL,
confidence = NULL, # confidence = c(0.8, 0.95)
nMCIter = 100,
control = list(nnzlmax = 1000000, nsubmax = 300000, tmpmax = 50000),
reportDimensionsOnly = FALSE,
trace = FALSE
) {
if (is.null(strDesign) && !is.null(predictors)) {
strDesign <- STRDesign(predictors, norm = 1)
lambdas <- predictors
}
if (is.null(strDesign)) {
stop("(strDesign and lambdas) or predictors should be provided...")
}
cm <- strDesign$cm
rm <- strDesign$rm
lm <- lambdaMatrix(lambdas, rm$seats)
design <- rbind(cm$matrix, lm %*% rm$matrix)
if (trace) {
cat("\nDesign matrix dimensions: ")
cat(dim(design))
cat("\n")
}
if (reportDimensionsOnly) {
return(NULL)
}
noNA <- !is.na(data)
y <- as.vector(data)[noNA]
X <- design[c(noNA, rep(TRUE, nrow(design) - length(noNA))), ] # noNA should be extended with TRUE values to keep rows resposible for regularisation
C <- cm$matrix[noNA, ]
CC <- cm$matrix
X2 <- as(X, "dgTMatrix")
X.csr <- as.matrix.csr(new(
"matrix.coo",
ra = X2@x,
ia = X2@i + 1L,
ja = X2@j + 1L,
dimension = X2@Dim
))
suppressWarnings({
fit <- rq.fit.sfn(
X.csr,
y = c(y, rep(0, nrow(X) - length(y))),
control = control
)
})
coef <- fit$coef
dataHat <- CC %*% coef
if (is.null(predictors)) {
predictors <- strDesign$predictors
}
components <- extract(
as.vector(coef),
as.vector(data) - as.vector(dataHat),
NULL,
cm$matrix,
cm$seats,
predictors,
NULL
)
if (!is.null(confidence)) {
yHat <- (X.csr %*% coef)[seq_along(y)]
res <- y - yHat
if (getDoParWorkers() <= 1) {
registerDoSEQ()
} # A way to avoid warning from %dopar% when no parallel backend is registered
# compList = list()
# for(i in 1:nMCIter) {
compList <- foreach(i = 1:nMCIter) %dopar%
{
if (trace) {
cat("\nIteration ")
cat(i)
}
rand <- block_bootstrap(res, n = length(res), block_length = NULL)
dy <- rand - res
suppressWarnings({
dFit <- rq.fit.sfn(
X.csr,
y = c(dy, rep(0, nrow(X) - length(dy))),
control = control
)
})
dCoef <- dFit$coef
coefR <- coef + dCoef
dataHatR <- CC %*% coefR
componentsR <- extract(
as.vector(coefR),
as.vector(data) - as.vector(dataHatR),
NULL,
cm$matrix,
cm$seats,
predictors,
NULL
)
# compList[[length(compList)+1]] = componentsR
componentsR
}
m <- matrix(0, length(compList), length(components$forecast$data))
for (i in seq_along(compList)) {
m[i, ] <- compList[[i]]$forecast$data
}
lu <- getLowerUpperRSTR(m, confidence)
components$forecast$upper <- lu$upper
components$forecast$lower <- lu$lower
for (p in seq_along(components$predictors)) {
m <- matrix(0, length(compList), length(components$predictors[[p]]$data))
for (i in seq_along(compList)) {
m[i, ] <- compList[[i]]$predictors[[p]]$data
}
lu <- getLowerUpperRSTR(m, confidence)
components$predictors[[p]]$upper <- lu$upper
components$predictors[[p]]$lower <- lu$lower
}
}
result <- list(
output = components,
input = list(data = data, predictors = predictors, lambdas = lambdas),
method = "RSTRmodel"
)
class(result) <- "STR"
return(result)
}
nFoldRSTRCV <- function(
n,
trainData,
fcastData,
trainC,
fcastC,
regMatrix,
regSeats,
lambdas,
control
) {
SAE <- 0
l <- 0
lm <- lambdaMatrix(lambdas, regSeats)
R <- lm %*% regMatrix
# resultList = list()
# for(i in 1:n) {
resultList <- foreach(i = 1:n) %dopar%
{
noNA <- !is.na(trainData[[i]])
y <- (trainData[[i]])[noNA]
C <- (trainC[[i]])[noNA, ]
X <- rbind(C, R)
X2 <- as(X, "dgTMatrix")
X.csr <- as.matrix.csr(new(
"matrix.coo",
ra = X2@x,
ia = X2@i + 1L,
ja = X2@j + 1L,
dimension = X2@Dim
))
suppressWarnings({
fit <- rq.fit.sfn(
X.csr,
y = c(y, rep(0, nrow(X) - length(y))),
control = control
)
})
coef <- fit$coef
fcast <- fcastC[[i]] %*% coef
resid <- fcastData[[i]] - as.vector(fcast)
# resultList[[length(resultList) + 1]] = c(SAE = sum(abs(resid), na.rm = TRUE), l = sum(!is.na(resid)))
c(SAE = sum(abs(resid), na.rm = TRUE), l = sum(!is.na(resid)))
}
for (i in seq_along(resultList)) {
SAE <- SAE + resultList[[i]][1]
l <- l + resultList[[i]][2]
}
if (l == 0) {
return(Inf)
}
return(SAE / l)
}
RSTR_ <- function(
data,
predictors,
confidence = NULL, # confidence = c(0.8, 0.95),
nMCIter = 100,
lambdas = NULL,
pattern = extractPattern(predictors),
nFold = 5,
reltol = 0.005,
gapCV = 1,
control = list(nnzlmax = 1000000, nsubmax = 300000, tmpmax = 50000),
trace = FALSE
) {
if (getDoParWorkers() <= 1) {
registerDoSEQ()
} # A way to avoid warning from %dopar% when no parallel backend is registered
f <- function(p) {
p <- exp(p) # Optimisation is on log scale
if (trace) {
cat("\nParameters = [")
cat(p)
cat("]\n")
}
newLambdas <- createLambdas(p, pattern = pattern, original = origP)
cv <- nFoldRSTRCV(
n = nFold,
trainData = trainData,
fcastData = fcastData,
trainC = trainC,
fcastC = fcastC,
regMatrix = regMatrix,
regSeats = regSeats,
lambdas = newLambdas,
control = control
)
if (trace) {
cat("CV = ")
cat(cv)
cat("\n")
}
return(cv)
}
lData <- length(data)
subInds <- lapply(1:nFold, FUN = function(i) {
sort(unlist(lapply(1:gapCV, FUN = function(j) {
seq(from = (i - 1) * gapCV + j, to = lData, by = nFold * gapCV)
})))
})
complInds <- lapply(subInds, FUN = function(s) setdiff(1:lData, s))
strDesign <- STRDesign(predictors)
C <- strDesign$cm$matrix
fcastC <- lapply(subInds, FUN = function(si) C[si, ])
trainC <- lapply(complInds, FUN = function(ci) C[ci, ])
fcastData <- lapply(subInds, FUN = function(si) data[si])
trainData <- lapply(complInds, FUN = function(ci) data[ci])
rm <- strDesign$rm
regMatrix <- rm$matrix
regSeats <- rm$seats
if (!is.null(lambdas)) {
initP <- extractP(lambdas, pattern)
origP <- abs(extractP(lambdas, rep(TRUE, length(pattern))))
} else {
initP <- extractP(predictors, pattern)
origP <- abs(extractP(predictors, rep(TRUE, length(pattern))))
}
# Optimisation is performed on log scale
optP <- optim(
par = log(initP),
fn = f,
method = "Nelder-Mead",
control = list(reltol = reltol)
)
newLambdas <- createLambdas(exp(optP$par), pattern, original = origP)
result <- RSTRmodel(
data,
strDesign = strDesign,
lambdas = newLambdas,
confidence = confidence,
nMCIter = nMCIter,
control = control,
trace = trace
)
result$optim.CV.MAE <- optP$value
result$nFold <- nFold
result$gapCV <- gapCV
result$method <- "RSTR"
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.