Nothing
### Fit the independent truncated Gaussian model
### there exist two versions:
### - ITGcm is identical to the version of meta-d' proposed by Maniscalco and Lau (2012)
### - ITGc is identical to HMetad proposed by Fleming (2017)
fitITGcm <-
function(N_SA_RA, N_SA_RB, N_SB_RA, N_SB_RB,
nInits, nRestart, nRatings, nCond, nTrials){
# search for initial values using a coarse search grind
temp <- expand.grid(maxD = seq(1, 5, 1),
theta = seq(-1/2,1/2, 1/2),
tauMin = c(.1, .3, 1), # position of the most conservative confidence criteria with respect to theta
tauRange = seq(1, 5, 1), # position of the most liberal confidence criterion with respect to theta
m = c(.1, .3, 1, 3)) # metacognitive efficiency
# number of parameters:
# nCond -1 sensitivity parameters
# 1 type 1 bias parameter
# 2 * (nRatings - 1) confidence criteria
# m-ratio parameter
#
inits <- data.frame(matrix(data=NA, nrow= nrow(temp),
ncol = nCond + nRatings*2 ))
if(nCond==1) {
inits[,1] <- log(temp$maxD) }
else{
inits[,1:(nCond)] <- log(t(mapply(function(maxD) diff(seq(0, maxD, length.out = nCond+1)), temp$maxD)))
}
if (nRatings > 3){
inits[,(nCond+1):(nCond+nRatings-2)] <-
log(t(mapply(function(tauMin, tauRange) diff(seq(-tauRange-tauMin, -tauMin, length.out=nRatings-1)),
temp$tauMin, temp$tauRange)))
inits[,(nCond+nRatings+2):(nCond + nRatings*2-1)] <-
log(t(mapply(function(tauMin, tauRange) diff(seq(tauMin, tauMin+tauRange, length.out=nRatings-1)),
temp$tauMin, temp$tauRange)))
}
if (nRatings == 3){
inits[,(nCond+1):(nCond+nRatings-2)] <-
log(mapply(function(tauMin, tauRange) diff(seq(-tauRange-tauMin, -tauMin, length.out=nRatings-1)),
temp$tauMin, temp$tauRange))
inits[,(nCond+nRatings+2):(nCond + nRatings*2-1)] <-
log(mapply(function(tauMin, tauRange) diff(seq(tauMin, tauMin+tauRange, length.out=nRatings-1)),
temp$tauMin, temp$tauRange))
}
inits[,nCond+(nRatings-1)] <- log(temp$tauMin)
inits[,nCond+nRatings] <- temp$theta
inits[,nCond+(nRatings+1)] <- log(temp$tauMin)
inits[,(nCond + nRatings*2)] <- log(temp$m)
logL <- apply(inits, MARGIN = 1,
function(p) try(ll_Mratio(p, N_SA_RA, N_SA_RB, N_SB_RA,N_SB_RB, nRatings, nCond), silent = TRUE))
logL <- as.numeric(logL)
inits <- inits[order(logL),]
inits <- inits[1:nInits,]
noFitYet <- TRUE
for (i in 1:nInits){
m <- try(optim(par = inits[i,],
fn = ll_Mratio, gr = NULL,
N_SA_RA = N_SA_RA,N_SA_RB = N_SA_RB,
N_SB_RA = N_SB_RA,N_SB_RB = N_SB_RB, nRatings = nRatings, nCond = nCond,
control = list(maxit = 10^4, reltol = 10^-4)))
if (!inherits(m, "try-error")){
for(j in 2:nRestart){
try(m <- optim(par = m$par,
fn = ll_Mratio, gr = NULL,
N_SA_RA = N_SA_RA,N_SA_RB = N_SA_RB,
N_SB_RA = N_SB_RA,N_SB_RB = N_SB_RB, nRatings = nRatings, nCond = nCond,
control = list(maxit = 10^6, reltol = 10^-8)))
}
if (noFitYet) {
fit <- m
noFitYet <- FALSE
} else {
if (m$value < fit$value) fit <- m
}
}
}
res <- data.frame(matrix(nrow=1, ncol=0))
if(!inherits(fit, "try-error")){
k <- length(fit$par)
res[paste("d_",1:nCond, sep="")] <- as.vector(cumsum(exp(fit$par[1:(nCond)])))
res$c <- as.vector(fit$par[nCond+nRatings])
res[,paste("theta_minus.",(nRatings-1):1, sep="")] <-
# c(as.vector(fit$par[nCond+nRatings-1] - rev(cumsum(c(exp(fit$par[(nCond+1):(nCond+nRatings-2)]))))), as.vector(fit$par[nCond+nRatings-1]))
exp(fit$par[nCond + nRatings*2]) * as.vector(fit$par[nCond+nRatings]) -
rev( cumsum(c(exp(fit$par[(nCond+1):(nCond+nRatings-1)]))))
res[,paste("theta_plus.",1:(nRatings-1), sep="")] <-
# c(as.vector(fit$par[nCond+nRatings+1]), as.vector(fit$par[nCond+nRatings+1]) + as.vector(cumsum(c(exp(fit$par[(nCond+nRatings+2):(nCond + nRatings*2-1)])))))
exp(fit$par[nCond + nRatings*2]) * as.vector(fit$par[nCond+nRatings]) +
cumsum(c(exp(fit$par[(nCond+nRatings+1):(nCond + nRatings*2-1)])))
res$m <- exp(fit$par[nCond + nRatings*2])
res$negLogLik <- fit$value
res$N <- nTrials
res$k <- k
res$BIC <- 2 * fit$value + k * log(nTrials)
res$AICc <- 2 * fit$value + k * 2 + 2*k*(k-1)/(nTrials-k-1)
res$AIC <- 2 * fit$value + k * 2
}
res
}
fitITGc <-
function(N_SA_RA, N_SA_RB, N_SB_RA, N_SB_RB,
nInits, nRestart, nRatings, nCond, nTrials){
# search for inital values using a coarse search grind
temp <- expand.grid(maxD = seq(1, 5, 1),
theta = seq(-1/2,1/2, 1/2),
tauMin = c(.1, .3, 1), # position of the most conservative confidence criteria with respect to theta
tauRange = seq(1, 5, 1), # position of the most liberal confidence criterion with respect to theta
m = c(.1, .3, 1, 3)) # metacognitive efficiency
inits <- data.frame(matrix(data=NA, nrow= nrow(temp),
ncol = nCond + nRatings*2 ))
if(nCond==1) {
inits[,1] <- log(temp$maxD) }
else{
inits[,1:(nCond)] <- log(t(mapply(function(maxD) diff(seq(0, maxD, length.out = nCond+1)), temp$maxD)))
}
if (nRatings > 3){
inits[,(nCond+1):(nCond+nRatings-2)] <-
log(t(mapply(function(tauMin, tauRange) diff(seq(-tauRange-tauMin, -tauMin, length.out=nRatings-1)),
temp$tauMin, temp$tauRange)))
inits[,(nCond+nRatings+2):(nCond + nRatings*2-1)] <-
log(t(mapply(function(tauMin, tauRange) diff(seq(tauMin, tauMin+tauRange, length.out=nRatings-1)),
temp$tauMin, temp$tauRange)))
}
if (nRatings == 3){
inits[,(nCond+1):(nCond+nRatings-2)] <-
log(mapply(function(tauMin, tauRange) diff(seq(-tauRange-tauMin, -tauMin, length.out=nRatings-1)),
temp$tauMin, temp$tauRange))
inits[,(nCond+nRatings+2):(nCond + nRatings*2-1)] <-
log(mapply(function(tauMin, tauRange) diff(seq(tauMin, tauMin+tauRange, length.out=nRatings-1)),
temp$tauMin, temp$tauRange))
}
inits[,nCond+(nRatings-1)] <- log(temp$tauMin)
inits[,nCond+nRatings] <- temp$theta
inits[,nCond+(nRatings+1)] <- log(temp$tauMin)
inits[,(nCond + nRatings*2)] <- log(temp$m)
logL <- apply(inits, MARGIN = 1,
function(p) try(ll_MratioF(p, N_SA_RA, N_SA_RB, N_SB_RA,N_SB_RB, nRatings, nCond), silent = TRUE))
logL <- as.numeric(logL)
inits <- inits[order(logL),]
inits <- inits[1:nInits,]
noFitYet <- TRUE
for (i in 1:nInits){
m <- try(optim(par = inits[i,],
fn = ll_MratioF, gr = NULL,
N_SA_RA = N_SA_RA,N_SA_RB = N_SA_RB,
N_SB_RA = N_SB_RA,N_SB_RB = N_SB_RB, nRatings = nRatings, nCond = nCond,
control = list(maxit = 10^4, reltol = 10^-4)))
if (!inherits(m, "try-error")){
for(j in 2:nRestart){
try(m <- optim(par = m$par,
fn = ll_MratioF, gr = NULL,
N_SA_RA = N_SA_RA,N_SA_RB = N_SA_RB,
N_SB_RA = N_SB_RA,N_SB_RB = N_SB_RB, nRatings = nRatings, nCond = nCond,
control = list(maxit = 10^6, reltol = 10^-8)))
}
if (noFitYet) {
fit <- m
noFitYet <- FALSE
} else {
if (m$value < fit$value) fit <- m
}
}
}
res <- data.frame(matrix(nrow=1, ncol=0))
if(!inherits(fit, "try-error")){
k <- length(fit$par)
res[paste("d_",1:nCond, sep="")] <- as.vector(cumsum(exp(fit$par[1:(nCond)])))
res$c <- as.vector(fit$par[nCond+nRatings])
res[,paste("theta_minus.",(nRatings-1):1, sep="")] <-
# c(as.vector(fit$par[nCond+nRatings-1] - rev(cumsum(c(exp(fit$par[(nCond+1):(nCond+nRatings-2)]))))), as.vector(fit$par[nCond+nRatings-1]))
#exp(fit$par[nCond + nRatings*2]) *
as.vector(fit$par[nCond+nRatings]) -
rev( cumsum(c(exp(fit$par[(nCond+1):(nCond+nRatings-1)]))))
res[,paste("theta_plus.",1:(nRatings-1), sep="")] <-
# c(as.vector(fit$par[nCond+nRatings+1]), as.vector(fit$par[nCond+nRatings+1]) + as.vector(cumsum(c(exp(fit$par[(nCond+nRatings+2):(nCond + nRatings*2-1)])))))
#exp(fit$par[nCond + nRatings*2]) *
as.vector(fit$par[nCond+nRatings]) +
cumsum(c(exp(fit$par[(nCond+nRatings+1):(nCond + nRatings*2-1)])))
res$m <- exp(fit$par[nCond + nRatings*2])
res$negLogLik <- fit$value
res$N <- nTrials
res$k <- k
res$BIC <- 2 * fit$value + k * log(nTrials)
res$AICc <- 2 * fit$value + k * 2 + 2*k*(k-1)/(nTrials-k-1)
res$AIC <- 2 * fit$value + k * 2
}
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.