Description Usage Arguments Value Author(s) References Examples
View source: R/superpc.predict.red.cv.R
Applies superpc.predict.red to cross-validation folds generates in superpc.cv. Uses the output to evaluate reduced models, and compare them to the full supervised principal components predictor.
| 1 2 3 4 5 |     superpc.predict.red.cv(fitred, 
                           fitcv, 
                           data, 
                           threshold, 
                           sign.wt="both")
 | 
| fitred | Output of superpc.predict.red | 
| fitcv | Output of superpc.cv | 
| data | Training data object | 
| threshold | Feature score threshold; usually estimated from superpc.cv | 
| sign.wt | Signs of feature weights allowed: "both", "pos", or "neg" | 
| lrtest.reduced | Likelihood ratio tests for reduced models | 
| components  | Number of supervised principal components used | 
| v.preval.red | Outcome predictor from reduced models. Array of num.reduced.models by (number of test observations) | 
| type  | Type of outcome | 
| call | calling sequence | 
"Eric Bair, Ph.D."
"Jean-Eudes Dazard, Ph.D."
"Rob Tibshirani, Ph.D."
Maintainer: "Jean-Eudes Dazard, Ph.D."
E. Bair and R. Tibshirani (2004). "Semi-supervised methods to predict patient survival from gene expression data." PLoS Biol, 2(4):e108.
E. Bair, T. Hastie, D. Paul, and R. Tibshirani (2006). "Prediction by supervised principal components." J. Am. Stat. Assoc., 101(473):119-137.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ## Not run: 
set.seed(332)
#generate some data
x <- matrix(rnorm(50*20), ncol=20)
y <- 10 + svd(x[1:10,])$v[,1] + .1*rnorm(20)
ytest <- 10 + svd(x[1:10,])$v[,1] + .1*rnorm(20)
censoring.status <- sample(c(rep(1,15), rep(0,5)))
censoring.status.test <- sample(c(rep(1,15), rep(0,5)))
featurenames <- paste("feature", as.character(1:50), sep="")
data <- list(x=x, 
             y=y, 
             censoring.status=censoring.status, 
             featurenames=featurenames)
data.test <- list(x=x,
                  y=ytest, 
                  censoring.status=censoring.status.test, 
                  featurenames=featurenames)
a <- superpc.train(data, type="survival")
aa <- superpc.cv(a, data)
fit.red <- superpc.predict.red(a,
                               data, 
                               data.test, 
                               threshold=.6)
fit.redcv <- superpc.predict.red.cv(fit.red, 
                                    aa, 
                                    data, 
                                    threshold=.6)
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.