Plot outcome predictions from superpc

Share:

Description

Plots outcome predictions from superpc

Usage

1
2
3
superpc.predictionplot(train.obj, data, data.test,  threshold, n.components=3,
  n.class=2, shrinkage=NULL,  call.win.metafile=FALSE)
 

Arguments

train.obj

Object returned by superpc.train

data

List of training data, of form described in superpc.train documen tation,

data.test

List of test data; same form as training data

threshold

Threshold for scores: features with abs(score)>threshold are retained.

n.components

Number of principal components to compute. Should be 1,2 or 3.

n.class

Number of classes for survival stratification. Onply applicable for survival data. Default 2.

shrinkage

Shrinkage to be applied to feature loadings. Default is NULL meaning no shrinkage

call.win.metafile

Used only by Excel interface call to function

Author(s)

Eric Bair and Robert Tibshirani

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
set.seed(332)
x<-matrix(rnorm(1000*40),ncol=40)
y<-10+svd(x[1:60,])$v[,1]+ .1*rnorm(40)
censoring.status<- sample(c(rep(1,30),rep(0,10)))

featurenames <- paste("feature",as.character(1:1000),sep="")
data<-list(x=x,y=y, censoring.status=censoring.status, featurenames=featurenames)


a<- superpc.train(data, type="survival")

superpc.predictionplot(a,data,data,threshold=1)