symbolicDA: Analysis of Symbolic Data

Symbolic data analysis methods: importing/exporting data from ASSO XML Files, distance calculation for symbolic data (Ichino-Yaguchi, de Carvalho measure), zoom star plot, 3d interval plot, multidimensional scaling for symbolic interval data, dynamic clustering based on distance matrix, HINoV method for symbolic data, Ichino's feature selection method, principal component analysis for symbolic interval data, decision trees for symbolic data based on optimal split with bagging, boosting and random forest approach (+visualization), kernel discriminant analysis for symbolic data, Kohonen's self-organizing maps for symbolic data, replication and profiling, artificial symbolic data generation. (Milligan, G.W., Cooper, M.C. (1985) <doi:10.1007/BF02294245>, Breiman, L. (1996), <doi:10.1007/BF00058655>, Hubert, L., Arabie, P. (1985), <doi:10.1007%2FBF01908075>, Ichino, M., & Yaguchi, H. (1994), <doi:10.1109/21.286391>, Rand, W.M. (1971) <doi:10.1080/01621459.1971.10482356>, Calinski, T., Harabasz, J. (1974) <doi:10.1080/03610927408827101>, Breckenridge, J.N. (2000) <doi:10.1207/S15327906MBR3502_5>, Groenen, P.J.F, Winsberg, S., Rodriguez, O., Diday, E. (2006) <doi:10.1016/j.csda.2006.04.003>, Walesiak, M., Dudek, A. (2008) <doi:10.1007/978-3-540-78246-9_11>, Dudek, A. (2007), <doi:10.1007/978-3-540-70981-7_4>).

Getting started

Package details

AuthorAndrzej Dudek, Marcin Pelka <>, Justyna Wilk<> (to 2017-09-20), Marek Walesiak <> (from 2018-02-01)
MaintainerAndrzej Dudek <>
LicenseGPL (>= 2)
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the symbolicDA package in your browser

Any scripts or data that you put into this service are public.

symbolicDA documentation built on May 28, 2022, 1:08 a.m.