random.forest.SDA | R Documentation |
Random forest algorithm for optimal split based decision tree for symbolic objects
random.forest.SDA(sdt,formula,testSet, mfinal = 100,...)
sdt |
Symbolic data table |
formula |
formula as in ln function |
testSet |
a vector of integers indicating classes to which each objects are allocated in learnig set |
mfinal |
number of partial models generated |
... |
arguments passed to decisionTree.SDA function |
random.forest.SDA implements Breiman's random forest algorithm for classification of symbolic data set.
Section details goes here
Andrzej Dudek andrzej.dudek@ue.wroc.pl Marcin Pełka marcin.pelka@ue.wroc.pl
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland http://keii.ue.wroc.pl/symbolicDA/
Billard L., Diday E. (eds.) (2006), Symbolic Data Analysis, Conceptual Statistics and Data Mining, John Wiley & Sons, Chichester.
Bock H.H., Diday E. (eds.) (2000), Analysis of symbolic data. Explanatory methods for extracting statistical information from complex data, Springer-Verlag, Berlin.
Diday E., Noirhomme-Fraiture M. (eds.) (2008), Symbolic Data Analysis with SODAS Software, John Wiley & Sons, Chichester.
bagging.SDA
,boosting.SDA
,decisionTree.SDA
# Example will be available in next version of package, thank You for your patience :-)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.