PCA.centers.SDA | R Documentation |
principal component analysis for symbolic objects described by symbolic interavl variables. Centers algorithm
PCA.centers.SDA(t,pc.number=2)
t |
symbolic interval data: a 3-dimensional table, first dimension represents object number, second dimension - variable number, and third dimension contains lower- and upper-bounds of intervals (Simple form of symbolic data table) |
pc.number |
number of principal components |
See file ../doc/PCA_SDA.pdf for further details
Data in reduced space (symbolic interval data: a 3-dimensional table)
Andrzej Dudek andrzej.dudek@ue.wroc.pl
Department of Econometrics and Computer Science, University of Economics, Wroclaw, Poland http://keii.ue.wroc.pl/symbolicDA/
Billard L., Diday E. (eds.) (2006), Symbolic Data Analysis, Conceptual Statistics and Data Mining, John Wiley & Sons, Chichester.
Bock H.H., Diday E. (eds.) (2000), Analysis of symbolic data. Explanatory methods for extracting statistical information from complex data, Springer-Verlag, Berlin.
Diday E., Noirhomme-Fraiture M. (eds.) (2008), Symbolic Data Analysis with SODAS Software, John Wiley & Sons, Chichester.
PCA.mrpca.SDA
,
PCA.spaghetti.SDA
,
PCA.spca.SDA
,
PCA.vertices.SDA
# Example will be available in next version of package, thank You for your patience :-)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.