DClust | R Documentation |
Dynamical clustering of objects described by symbolic and/or classic (metric, non-metric) variables based on distance matrix
DClust(dist, cl, iter=100)
dist |
distance matrix |
cl |
number of clusters or vector with initial prototypes of clusters |
iter |
maximum number of iterations |
See file ../doc/DClust_details.pdf for further details
a vector of integers indicating the cluster to which each object is allocated
Andrzej Dudek andrzej.dudek@ue.wroc.pl, Justyna Wilk justyna.wilk@ue.wroc.pl Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA/
Bock, H.H., Diday, E. (eds.) (2000), Analysis of Symbolic Data. Explanatory Methods for Extracting Statistical Information from Complex Data, Springer-Verlag, Berlin.
Diday, E., Noirhomme-Fraiture, M. (eds.) (2008), Symbolic Data Analysis with SODAS Software, John Wiley & Sons, Chichester, pp. 191-204.
Diday, E. (1971), La methode des Nuees dynamiques, Revue de Statistique Appliquee, Vol. 19-2, pp. 19-34.
Celeux, G., Diday, E., Govaert, G., Lechevallier, Y., Ralambondrainy, H. (1988), Classifcation Automatique des Donnees, Environnement Statistique et Informatique - Dunod, Gauthier-Villards, Paris.
SClust
, dist_SDA
; dist
in stats
library; dist.GDM
in clusterSim
library; pam
in cluster
library
# LONG RUNNING - UNCOMMENT TO RUN #data("cars",package="symbolicDA") #sdt<-cars #dist<-dist_SDA(sdt, type="U_3") #clust<-DClust(dist, cl=5, iter=100) #print(clust)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.