DClust | R Documentation |
Dynamical clustering of objects described by symbolic and/or classic (metric, non-metric) variables based on distance matrix
DClust(dist, cl, iter=100)
dist |
distance matrix |
cl |
number of clusters or vector with initial prototypes of clusters |
iter |
maximum number of iterations |
See file ../doc/DClust_details.pdf for further details
a vector of integers indicating the cluster to which each object is allocated
Andrzej Dudek andrzej.dudek@ue.wroc.pl, Justyna Wilk Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
Bock, H.H., Diday, E. (eds.) (2000), Analysis of Symbolic Data. Explanatory Methods for Extracting Statistical Information from Complex Data, Springer-Verlag, Berlin.
Diday, E., Noirhomme-Fraiture, M. (eds.) (2008), Symbolic Data Analysis with SODAS Software, John Wiley & Sons, Chichester, pp. 191-204.
Diday, E. (1971), La methode des Nuees dynamiques, Revue de Statistique Appliquee, Vol. 19-2, pp. 19-34.
Celeux, G., Diday, E., Govaert, G., Lechevallier, Y., Ralambondrainy, H. (1988), Classifcation Automatique des Donnees, Environnement Statistique et Informatique - Dunod, Gauthier-Villards, Paris.
SClust
, dist_SDA
; dist
in stats
library; dist.GDM
in clusterSim
library; pam
in cluster
library
# LONG RUNNING - UNCOMMENT TO RUN
#data("cars",package="symbolicDA")
#sdt<-cars
#dist<-dist_SDA(sdt, type="U_3")
#clust<-DClust(dist, cl=5, iter=100)
#print(clust)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.