index.G1d | R Documentation |
Calculates Calinski-Harabasz pseudo F-statistic based on distance matrix
index.G1d (d,cl)
d |
distance matrix (see |
cl |
a vector of integers indicating the cluster to which each object is allocated |
See file ../doc/indexG1d_details.pdf for further details
value of Calinski-Harabasz pseudo F-statistic based on distance matrix
Andrzej Dudek andrzej.dudek@ue.wroc.pl, Justyna Wilk justyna.wilk@ue.wroc.pl Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/symbolicDA/
Calinski, T., Harabasz, J. (1974), A dendrite method for cluster analysis, "Communications in Statistics", vol. 3, 1-27. Available at: doi: /10.1080/03610927408827101.
Everitt, B.S., Landau, E., Leese, M. (2001), Cluster analysis, Arnold, London, p. 103. ISBN 9780340761199.
Gordon, A.D. (1999), Classification, Chapman & Hall/CRC, London, p. 62. ISBN 9781584880134.
Milligan, G.W., Cooper, M.C. (1985), An examination of procedures of determining the number of cluster in a data set, "Psychometrika", vol. 50, no. 2, 159-179. Available at: doi: 10.1007/BF02294245.
Diday, E., Noirhomme-Fraiture, M. (eds.) (2008), Symbolic Data Analysis with SODAS Software, John Wiley & Sons, Chichester, pp. 236-262.
Dudek, A. (2007), Cluster Quality Indexes for Symbolic Classification. An Examination, In: H.H.-J. Lenz, R. Decker (Eds.), Advances in Data Analysis, Springer-Verlag, Berlin, pp. 31-38. Available at: doi: 10.1007/978-3-540-70981-7_4.
DClust
, SClust
; index.G2
, index.G3
, index.S
, index.H
,index.KL
,index.Gap
, index.DB
in clusterSim
library
# LONG RUNNING - UNCOMMENT TO RUN # Example 1 #library(stats) #data("cars",package="symbolicDA") #x<-cars #d<-dist_SDA(x, type="U_2") #wynik<-hclust(d, method="ward", members=NULL) #clusters<-cutree(wynik, 4) #G1d<-index.G1d(d, clusters) #print(G1d) # Example 2 #data("cars",package="symbolicDA") #md <- dist_SDA(cars, type="U_3", gamma=0.5, power=2) # nc - number_of_clusters #min_nc=2 #max_nc=10 #res <- array(0,c(max_nc-min_nc+1,2)) #res[,1] <- min_nc:max_nc #clusters <- NULL #for (nc in min_nc:max_nc) #{ #cl2 <- pam(md, nc, diss=TRUE) #res[nc-min_nc+1,2] <- G1d <- index.G1d(md,cl2$clustering) #clusters <- rbind(clusters, cl2$clustering) #} #print(paste("max G1d for",(min_nc:max_nc)[which.max(res[,2])],"clusters=",max(res[,2]))) #print("clustering for max G1d") #print(clusters[which.max(res[,2]),]) #write.table(res,file="G1d_res.csv",sep=";",dec=",",row.names=TRUE,col.names=FALSE) #plot(res, type="p", pch=0, xlab="Number of clusters", ylab="G1d", xaxt="n") #axis(1, c(min_nc:max_nc))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.