SClust | R Documentation |
Dynamical clustering of symbolic data based on symbolic data table
SClust(table.Symbolic, cl, iter=100, variableSelection=NULL, objectSelection=NULL)
table.Symbolic |
symbolic data table |
cl |
number of clusters or vector with initial prototypes of clusters |
iter |
maximum number of iterations |
variableSelection |
vector of numbers of variables to use in clustering procedure or NULL for all variables |
objectSelection |
vector of numbers of objects to use in clustering procedure or NULL for all objects |
See file ../doc/SClust_details.pdf for further details
a vector of integers indicating the cluster to which each object is allocated
Andrzej Dudek andrzej.dudek@ue.wroc.pl, Justyna Wilk Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
Bock, H.H., Diday, E. (eds.) (2000), Analysis of Symbolic Data. Explanatory Methods for Extracting Statistical Information from Complex Data, Springer-Verlag, Berlin.
Diday, E., Noirhomme-Fraiture, M. (eds.) (2008), Symbolic Data Analysis with SODAS Software, John Wiley & Sons, Chichester, pp. 185-191.
Verde, R. (2004), Clustering Methods in Symbolic Data Analysis, In: D. Banks, L. House, E. R. McMorris, P. Arabie, W. Gaul (Eds.), Classification, clustering and Data mining applications, Springer-Verlag, Heidelberg, pp. 299-317.
Diday, E. (1971), La methode des Nuees dynamiques, Revue de Statistique Appliquee, Vol. 19-2, pp. 19-34.
Celeux, G., Diday, E., Govaert, G., Lechevallier, Y., Ralambondrainy, H. (1988), Classifcation Automatique des Donnees, Environnement Statistique et Informatique - Dunod, Gauthier-Villards, Paris.
DClust
; kmeans
in stats
library
# LONG RUNNING - UNCOMMENT TO RUN
#data("cars",package="symbolicDA")
#sdt<-cars
#clust<-SClust(sdt, cl=3, iter=50)
#print(clust)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.