Description Usage Arguments Examples
Computes gene-wise p-values from DESeq2 method using observation-wise dispersion estimates
1 | deseq_fn(y, x, phi, indiv)
|
y |
a numeric matrix of dim |
x |
a numeric design matrix of dim |
phi |
a numeric design matrix of size |
indiv |
a vector of length |
ind |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ## Not run:
#rm(list=ls())
set.seed(123)
##generate some fake data
########################
n <- 100
r <- 12
phi <- matrix(rep(1:3), 4, ncol=1, nrow=r)
sigma <- 0.4
b0 <- 1
#under the null:
b1 <- 0
#under the alternative:
b1 <- 0.7
y.tilde <- b0 + b1*phi + rnorm(r, sd = sigma)
y <- floor(exp(t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +
matrix(rep(y.tilde, n), ncol=n, nrow=r))))
x <- matrix(1:2, ncol=1, nrow=r/2)
indiv=rep(1:4, each=3)
#run test
temp <- deseq_fn(y, x, phi, indiv)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.