Nothing
# ------------------------------------------------------------------------------
# Generated by 'pre-generate/generate-steps.R': do not edit by hand.
# ------------------------------------------------------------------------------
#' @title Betti Curve Vectorization of Persistent Homology
#'
#' @description The function `step_vpd_betti_curve()` creates
#' a _specification_ of a recipe step that will convert
#' a list-column of 3-column matrices of persistence data
#' to a list-column of 1-row matrices of vectorizations.
#'
#'
#' @template step-vpd-details
#'
#' @section Engine:
#'
#' The Betti curve vectorization deploys
#' [TDAvec::computeBettiCurve()].
#' See there for definitions and references.
#'
#' @section Tuning Parameters:
#'
#' This step has 1 tuning parameter:
#' \itemize{
#' \item `hom_degree`: Homological degree (type: integer, default: `0L`)
#' }
#'
#' @param hom_degree
#' The homological degree of the features to be transformed.
#' @param xseq
#' A discretization grid, as an increasing numeric vector.
#' `xseq` overrides the other `x*` parameters with a warning.
#' @param xmin,xmax,xlen,xby
#' Limits and resolution of a discretization grid;
#' specify only one of `xlen` and `xby`.
#' @param evaluate
#' The method by which to vectorize continuous functions over a grid,
#' either 'intervals' or 'points'.
#' Some functions only admit one method.
#' @import recipes
#' @inheritParams recipes::step_pca
#' @inherit recipes::step_pca return
#' @example inst/examples/zzz-ex-step-vpd-betti-curve.R
#' @export
step_vpd_betti_curve <- function(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
xseq = NULL, xmin = NULL, xmax = NULL, xlen = NULL, xby = NULL,
evaluate = "intervals",
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_betti_curve")
) {
recipes_pkg_check(required_pkgs.step_vpd_betti_curve())
add_step(
recipe,
step_vpd_betti_curve_new(
terms = rlang::enquos(...),
trained = trained,
role = role,
hom_degree = hom_degree,
xseq = xseq, xmin = xmin, xmax = xmax, xlen = xlen, xby = xby,
evaluate = evaluate,
columns = columns,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_vpd_betti_curve_new <- function(
terms,
role, trained,
hom_degree,
xseq, xmin, xmax, xlen, xby,
evaluate,
columns, keep_original_cols,
skip, id
) {
step(
subclass = "vpd_betti_curve",
terms = terms,
role = role,
trained = trained,
hom_degree = hom_degree,
xseq = xseq, xmin = xmin, xmax = xmax, xlen = xlen, xby = xby,
evaluate = evaluate,
columns = columns,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_vpd_betti_curve <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_pd_list(training[, col_names, drop = FALSE])
for (col_name in col_names) class(training[[col_name]]) <- "list"
x[paste0("x", c("seq", "min", "max", "len", "by"))] <-
reconcile_scale_seq(x, training[, col_names, drop = FALSE], "x")
step_vpd_betti_curve_new(
terms = col_names,
role = x$role,
trained = TRUE,
hom_degree = x$hom_degree,
xseq = x$xseq, xmin = x$xmin, xmax = x$xmax, xlen = x$xlen, xby = x$xby,
evaluate = x$evaluate,
columns = col_names,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_vpd_betti_curve <- function(object, new_data, ...) {
col_names <- names(object$columns)
check_new_data(col_names, object, new_data)
for (col_name in col_names) class(new_data[[col_name]]) <- "list"
vph_data <- tibble::tibble(.rows = nrow(new_data))
for (col_name in col_names) {
col_vpd <- purrr::map(
new_data[[col_name]],
function(d) {
v <- TDAvec::computeBettiCurve(
as.matrix(d),
homDim = object$hom_degree,
scaleSeq = object$xseq,
evaluate = object$evaluate
)
vn <- vpd_suffix(v)
v <- as.vector(v)
names(v) <- vn
v
}
)
col_vpd <- purrr::map(
col_vpd,
function(v) as.data.frame(matrix(
v, nrow = 1L, dimnames = list(NULL, names(v))
))
)
vph_data[[paste(col_name, "bc", sep = "_")]] <- col_vpd
}
vph_data <- tidyr::unnest(
vph_data,
cols = tidyr::all_of(paste(col_names, "bc", sep = "_")),
names_sep = "_"
)
check_name(vph_data, new_data, object)
new_data <- vctrs::vec_cbind(new_data, vph_data)
new_data <- remove_original_cols(new_data, object, col_names)
new_data
}
#' @export
print.step_vpd_betti_curve <- function(
x, width = max(20, options()$width - 35), ...
) {
title <- "Betti curve of "
print_step(
untr_obj = x$terms,
tr_obj = NULL,
trained = x$trained,
title = title,
width = width
)
invisible(x)
}
#' @rdname required_pkgs.tdarec
#' @export
required_pkgs.step_vpd_betti_curve <- function(x, ...) {
c("TDAvec", "tdarec")
}
#' @rdname step_vpd_betti_curve
#' @usage NULL
#' @export
tidy.step_vpd_betti_curve <- function(x, ...) {
if (is_trained(x)) {
res <- tibble::tibble(
terms = unname(x$columns),
value = rep(NA_real_, length(x$columns))
)
} else {
term_names <- sel2char(x$terms)
res <- tibble::tibble(
terms = term_names,
value = rep(NA_real_, length(term_names))
)
}
res$id <- x$id
res
}
#' @rdname tunable_tdavec
#' @export
tunable.step_vpd_betti_curve <- function(x, ...) {
tibble::tibble(
name = c("hom_degree"),
call_info = list(
list(pkg = "tdarec", fun = "hom_degree", range = c(0L, unknown()))
),
source = "recipe",
component = "step_vpd_betti_curve",
component_id = x$id
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.