Nothing
# ------------------------------------------------------------------------------
# Generated by 'pre-generate/generate-steps.R': do not edit by hand.
# ------------------------------------------------------------------------------
#' @title Persistence Landscape Vectorization of Persistent Homology
#'
#' @description The function `step_vpd_persistence_landscape()` creates
#' a _specification_ of a recipe step that will convert
#' a list-column of 3-column matrices of persistence data
#' to a list-column of 1-row matrices of vectorizations.
#'
#'
#' @template step-vpd-details
#'
#' @section Engine:
#'
#' The persistence landscape vectorization deploys
#' [TDAvec::computePersistenceLandscape()].
#' See there for definitions and references.
#'
#' @section Tuning Parameters:
#'
#' This step has 4 tuning parameters:
#' \itemize{
#' \item `hom_degree`: Homological degree (type: integer, default: `0L`)
#' \item `num_levels`: # Levels or envelopes (type: integer, default: `6L`)
#' \item `weight_func_pl`: Kernel distance weight function (type: character, default: `"triangle"`)
#' \item `bandwidth`: Kernel bandwidth (type: double, default: `NULL`)
#' }
#'
#' @param hom_degree
#' The homological degree of the features to be transformed.
#' @param xseq
#' A discretization grid, as an increasing numeric vector.
#' `xseq` overrides the other `x*` parameters with a warning.
#' @param xmin,xmax,xlen,xby
#' Limits and resolution of a discretization grid;
#' specify only one of `xlen` and `xby`.
#' @param num_levels
#' The number of levels of a persistence landscape to vectorize.
#' If `num_levels` is greater than the length of a landscape,
#' then additional levels of zeros will be included.
#' @param generalized
#' Logical indicator to compute generalized functions.
#' @param weight_func_pl
#' A _single_ character for the type of kernel function
#' used to compute generalized landscapes.
#' @param bandwidth
#' The bandwidth of a kernel function.
#' @import recipes
#' @inheritParams recipes::step_pca
#' @inherit recipes::step_pca return
#' @example inst/examples/zzz-ex-step-vpd-persistence-landscape.R
#' @export
step_vpd_persistence_landscape <- function(
recipe,
...,
role = "predictor",
trained = FALSE,
hom_degree = 0L,
xseq = NULL, xmin = NULL, xmax = NULL, xlen = NULL, xby = NULL,
num_levels = 6L,
generalized = FALSE,
weight_func_pl = "triangle",
bandwidth = NULL,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("vpd_persistence_landscape")
) {
recipes_pkg_check(required_pkgs.step_vpd_persistence_landscape())
add_step(
recipe,
step_vpd_persistence_landscape_new(
terms = rlang::enquos(...),
trained = trained,
role = role,
hom_degree = hom_degree,
xseq = xseq, xmin = xmin, xmax = xmax, xlen = xlen, xby = xby,
num_levels = num_levels,
generalized = generalized,
weight_func_pl = weight_func_pl,
bandwidth = bandwidth,
columns = columns,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_vpd_persistence_landscape_new <- function(
terms,
role, trained,
hom_degree,
xseq, xmin, xmax, xlen, xby,
num_levels,
generalized,
weight_func_pl,
bandwidth,
columns, keep_original_cols,
skip, id
) {
step(
subclass = "vpd_persistence_landscape",
terms = terms,
role = role,
trained = trained,
hom_degree = hom_degree,
xseq = xseq, xmin = xmin, xmax = xmax, xlen = xlen, xby = xby,
num_levels = num_levels,
generalized = generalized,
weight_func_pl = weight_func_pl,
bandwidth = bandwidth,
columns = columns,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_vpd_persistence_landscape <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_pd_list(training[, col_names, drop = FALSE])
for (col_name in col_names) class(training[[col_name]]) <- "list"
x[paste0("x", c("seq", "min", "max", "len", "by"))] <-
reconcile_scale_seq(x, training[, col_names, drop = FALSE], "x")
if (is.null(x$bandwidth)) {
if (!isFALSE(x$generalized))
warning("`bandwidth` is `NULL` so `generalized` is set to `FALSE`.")
x$generalized = FALSE
}
else {
if (!isTRUE(x$generalized))
warning("`bandwidth` is provided so `generalized` is set to `TRUE`.")
x$generalized = TRUE
}
if (is.na(.TDAvec_version) || .TDAvec_version == "0.1.4") {
x_pairs_min <- vapply(training[, col_names, drop = FALSE],
function(l) {
val <- vapply(l, pairs_min, 0, hom_degree = x$hom_degree)
min(val[is.finite(val)])
}, 0)
if (x$num_levels > x_pairs_min) {
warning("`num_levels = ", x$num_levels, "` is less than minimum diagram size ",
"so will be reset to ", x_pairs_min)
x$num_levels <- x_pairs_min
}
}
step_vpd_persistence_landscape_new(
terms = col_names,
role = x$role,
trained = TRUE,
hom_degree = x$hom_degree,
xseq = x$xseq, xmin = x$xmin, xmax = x$xmax, xlen = x$xlen, xby = x$xby,
num_levels = x$num_levels,
generalized = x$generalized,
weight_func_pl = x$weight_func_pl,
bandwidth = x$bandwidth,
columns = col_names,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_vpd_persistence_landscape <- function(object, new_data, ...) {
col_names <- names(object$columns)
check_new_data(col_names, object, new_data)
for (col_name in col_names) class(new_data[[col_name]]) <- "list"
vph_data <- tibble::tibble(.rows = nrow(new_data))
for (col_name in col_names) {
col_vpd <- purrr::map(
new_data[[col_name]],
function(d) {
v <- TDAvec::computePersistenceLandscape(
as.matrix(d),
homDim = object$hom_degree,
scaleSeq = object$xseq,
k = object$num_levels,
generalized = object$generalized,
kernel = object$weight_func_pl,
h = object$bandwidth
)
vn <- vpd_suffix(v)
v <- as.vector(v)
names(v) <- vn
v
}
)
col_vpd <- purrr::map(
col_vpd,
function(v) as.data.frame(matrix(
v, nrow = 1L, dimnames = list(NULL, names(v))
))
)
vph_data[[paste(col_name, "pl", sep = "_")]] <- col_vpd
}
vph_data <- tidyr::unnest(
vph_data,
cols = tidyr::all_of(paste(col_names, "pl", sep = "_")),
names_sep = "_"
)
check_name(vph_data, new_data, object)
new_data <- vctrs::vec_cbind(new_data, vph_data)
new_data <- remove_original_cols(new_data, object, col_names)
new_data
}
#' @export
print.step_vpd_persistence_landscape <- function(
x, width = max(20, options()$width - 35), ...
) {
title <- "persistence landscape of "
print_step(
untr_obj = x$terms,
tr_obj = NULL,
trained = x$trained,
title = title,
width = width
)
invisible(x)
}
#' @rdname required_pkgs.tdarec
#' @export
required_pkgs.step_vpd_persistence_landscape <- function(x, ...) {
c("TDAvec", "tdarec")
}
#' @rdname step_vpd_persistence_landscape
#' @usage NULL
#' @export
tidy.step_vpd_persistence_landscape <- function(x, ...) {
if (is_trained(x)) {
res <- tibble::tibble(
terms = unname(x$columns),
value = rep(NA_real_, length(x$columns))
)
} else {
term_names <- sel2char(x$terms)
res <- tibble::tibble(
terms = term_names,
value = rep(NA_real_, length(term_names))
)
}
res$id <- x$id
res
}
#' @rdname tunable_tdavec
#' @export
tunable.step_vpd_persistence_landscape <- function(x, ...) {
tibble::tibble(
name = c("hom_degree", "num_levels", "weight_func_pl", "bandwidth"),
call_info = list(
list(pkg = "tdarec", fun = "hom_degree", range = c(0L, unknown())),
list(pkg = "tdarec", fun = "num_levels", range = c(1L, unknown())),
list(pkg = "tdarec", fun = "weight_func_pl", values = c("triangle", "epanechnikov", "tricubic")),
list(pkg = "tdarec", fun = "bandwidth", range = c(unknown(), unknown()))
),
source = "recipe",
component = "step_vpd_persistence_landscape",
component_id = x$id
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.