Nothing
#' Template: Survival Forest Plot
#'
#' Creates a valid expression to generate a survival forest plot.
#'
#' @inheritParams template_arguments
#' @inheritParams template_forest_rsp
#' @param stats (`character`)\cr the names of statistics to be reported among:
#' * `n_tot_events`: Total number of events per group.
#' * `n_events`: Number of events per group.
#' * `n_tot`: Total number of observations per group.
#' * `n`: Number of observations per group.
#' * `median`: Median survival time.
#' * `hr`: Hazard ratio.
#' * `ci`: Confidence interval of hazard ratio.
#' * `pval`: p-value of the effect.
#' Note, one of the statistics `n_tot` and `n_tot_events`, as well as both `hr` and `ci`
#' are required.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_g_forest_tte()]
#'
#' @keywords internal
template_forest_tte <- function(dataname = "ANL",
parentname = "ANL_ADSL",
arm_var,
ref_arm = NULL,
comp_arm = NULL,
obj_var_name = "",
aval_var = "AVAL",
cnsr_var = "CNSR",
subgroup_var,
strata_var = NULL,
stats = c("n_tot_events", "n_events", "median", "hr", "ci"),
riskdiff = NULL,
conf_level = 0.95,
col_symbol_size = NULL,
time_unit_var = "AVALU",
font_size = 15,
ggplot2_args = teal.widgets::ggplot2_args()) {
checkmate::assert_string(dataname)
checkmate::assert_string(arm_var)
checkmate::assert_string(obj_var_name)
checkmate::assert_character(subgroup_var, null.ok = TRUE)
checkmate::assert_character(stats, min.len = 3)
checkmate::assert_true(any(c("n_tot", "n_tot_events") %in% stats))
checkmate::assert_true(all(c("hr", "ci") %in% stats))
checkmate::assert_list(riskdiff, null.ok = TRUE)
checkmate::assert_number(font_size)
y <- list()
ref_arm_val <- paste(ref_arm, collapse = "/")
# Data processing.
data_list <- list()
anl_list <- list()
parent_list <- list()
anl_list <- add_expr(
anl_list,
prepare_arm(
dataname = dataname,
arm_var = arm_var,
ref_arm = ref_arm,
comp_arm = comp_arm,
ref_arm_val = ref_arm_val
)
)
anl_list <- add_expr(
anl_list,
substitute_names(
expr = {
dplyr::mutate(arm_var = combine_levels(arm_var, comp_arm)) %>%
dplyr::mutate(is_event = cnsr_var == 0)
},
names = list(arm_var = as.name(arm_var)),
others = list(
comp_arm = comp_arm,
cnsr_var = as.name(cnsr_var)
)
)
)
data_list <- add_expr(
data_list,
substitute(
anl <- anl_list,
env = list(
anl_list = pipe_expr(anl_list)
)
)
)
parent_list <- add_expr(
parent_list,
prepare_arm(
dataname = parentname,
arm_var = arm_var,
ref_arm = ref_arm,
comp_arm = comp_arm,
ref_arm_val = ref_arm_val
)
)
parent_list <- add_expr(
parent_list,
substitute_names(
expr = dplyr::mutate(arm_var = combine_levels(arm_var, comp_arm)),
names = list(arm_var = as.name(arm_var)),
others = list(
ref_arm = ref_arm,
comp_arm = comp_arm
)
)
)
data_list <- add_expr(
data_list,
substitute(
parent <- parent_list,
env = list(
parent_list = pipe_expr(parent_list)
)
)
)
y$data <- bracket_expr(data_list)
# Tabulate subgroup analysis of response.
summary_list <- list()
summary_list <- add_expr(
summary_list,
substitute(
expr = df <- extract_survival_subgroups(
variables = list(
tte = aval_var,
is_event = "is_event",
arm = arm_var,
subgroups = subgroup_var,
strata = strata_var
),
control = control_coxph(conf_level = conf_level),
data = anl
),
env = list(
aval_var = aval_var,
arm_var = arm_var,
subgroup_var = subgroup_var,
strata_var = strata_var,
conf_level = conf_level
)
)
)
y$summary <- bracket_expr(summary_list)
# Table output.
y$table <- substitute(
expr = {
result <- rtables::basic_table() %>%
tabulate_survival_subgroups(
df,
vars = stats,
time_unit = as.character(anl$time_unit_var[1]),
riskdiff = riskdiff
)
},
env = list(stats = stats, time_unit_var = as.name(time_unit_var), riskdiff = riskdiff)
)
all_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
user_plot = ggplot2_args,
module_plot = teal.widgets::ggplot2_args(
labs = list(
title = paste(
paste("Forest Plot of Survival Duration for", obj_var_name),
ifelse(is.null(strata_var), "", paste("Stratified by", paste(strata_var, collapse = " and "))),
sep = "\n"
),
caption = ""
)
)
)
plot_list <- list()
plot_list <- add_expr(
plot_list,
substitute(
expr = {
f <- g_forest(
tbl = result,
col_symbol_size = col_s_size,
font_size = font_size,
as_list = TRUE
)
},
env = list(
col_s_size = col_symbol_size,
font_size = font_size
)
)
)
plot_list <- add_expr(
plot_list,
substitute(
expr = {
table <- f[["table"]] +
ggplot2::labs(title = ggplot2_args_title, subtitle = ggplot2_args_subtitle)
plot <- f[["plot"]] + ggplot2::labs(caption = ggplot2_args_caption)
},
env = list(
ggplot2_args_title = all_ggplot2_args$labs$title,
ggplot2_args_subtitle = all_ggplot2_args$labs$subtitle,
ggplot2_args_caption = all_ggplot2_args$labs$caption
)
)
)
# Plot output.
y$plot <- plot_list
y
}
#' teal Module: Forest Survival Plot
#'
#' This module produces a grid-style forest plot for time-to-event data with ADaM structure.
#'
#' @inheritParams tern::g_forest
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_forest_tte
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `plot` (`ggplot`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_g_forest_tte(
#' ..., # arguments for module
#' decorators = list(
#' plot = teal_transform_module(...) # applied only to `plot` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(nestcolor)
#' library(dplyr)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADTTE <- tmc_ex_adtte
#' ADSL$RACE <- droplevels(ADSL$RACE) %>% with_label("Race")
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADTTE <- data[["ADTTE"]]
#'
#' arm_ref_comp <- list(
#' ARM = list(
#' ref = "B: Placebo",
#' comp = c("A: Drug X", "C: Combination")
#' ),
#' ARMCD = list(
#' ref = "ARM B",
#' comp = c("ARM A", "ARM C")
#' )
#' )
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_forest_tte(
#' label = "Forest Survival",
#' dataname = "ADTTE",
#' arm_var = choices_selected(
#' variable_choices(ADSL, c("ARM", "ARMCD")),
#' "ARMCD"
#' ),
#' arm_ref_comp = arm_ref_comp,
#' paramcd = choices_selected(
#' value_choices(ADTTE, "PARAMCD", "PARAM"),
#' "OS"
#' ),
#' subgroup_var = choices_selected(
#' variable_choices(ADSL, names(ADSL)),
#' c("BMRKR2", "SEX")
#' ),
#' strata_var = choices_selected(
#' variable_choices(ADSL, c("STRATA1", "STRATA2")),
#' "STRATA2"
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_g_forest_tte <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
arm_ref_comp = NULL,
subgroup_var,
paramcd,
strata_var,
aval_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVAL"), "AVAL",
fixed = TRUE
),
cnsr_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "CNSR"), "CNSR",
fixed = TRUE
),
stats = c("n_tot_events", "n_events", "median", "hr", "ci"),
riskdiff = NULL,
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order = TRUE),
time_unit_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVALU"), "AVALU",
fixed = TRUE
),
fixed_symbol_size = TRUE,
plot_height = c(500L, 200L, 2000L),
plot_width = c(1500L, 800L, 3000L),
rel_width_forest = c(25L, 0L, 100L),
font_size = c(15L, 1L, 30L),
pre_output = NULL,
post_output = NULL,
ggplot2_args = teal.widgets::ggplot2_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_g_forest_tte")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(subgroup_var, "choices_selected")
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(strata_var, "choices_selected")
checkmate::assert_class(aval_var, "choices_selected")
checkmate::assert_class(cnsr_var, "choices_selected")
checkmate::assert_class(conf_level, "choices_selected")
checkmate::assert_class(time_unit_var, "choices_selected")
checkmate::assert_character(stats, min.len = 3)
checkmate::assert_true(any(c("n_tot", "n_tot_events") %in% stats))
checkmate::assert_true(all(c("hr", "ci") %in% stats))
checkmate::assert_list(riskdiff, null.ok = TRUE)
checkmate::assert_flag(fixed_symbol_size)
checkmate::assert_numeric(plot_height, len = 3, any.missing = FALSE, finite = TRUE)
checkmate::assert_numeric(plot_height[1], lower = plot_height[2], upper = plot_height[3], .var.name = "plot_height")
checkmate::assert_numeric(plot_width, len = 3, any.missing = FALSE, null.ok = TRUE, finite = TRUE)
checkmate::assert_numeric(
plot_width[1],
lower = plot_width[2], upper = plot_width[3], null.ok = TRUE, .var.name = "plot_width"
)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(ggplot2_args, "ggplot2_args")
assert_decorators(decorators, "plot")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
paramcd = cs_to_des_filter(paramcd, dataname = dataname),
aval_var = cs_to_des_select(aval_var, dataname = dataname),
cnsr_var = cs_to_des_select(cnsr_var, dataname = dataname),
subgroup_var = cs_to_des_select(subgroup_var, dataname = parentname, multiple = TRUE, ordered = TRUE),
strata_var = cs_to_des_select(strata_var, dataname = parentname, multiple = TRUE),
time_unit_var = cs_to_des_select(time_unit_var, dataname = dataname)
)
module(
label = label,
server = srv_g_forest_tte,
ui = ui_g_forest_tte,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
arm_ref_comp = arm_ref_comp,
parentname = parentname,
stats = stats,
riskdiff = riskdiff,
plot_height = plot_height,
plot_width = plot_width,
ggplot2_args = ggplot2_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_g_forest_tte <- function(id, ...) {
a <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$paramcd,
a$subgroup_var,
a$strata_var,
a$aval_var,
a$cnsr_var,
a$time_unit_var
)
ns <- NS(id)
teal.widgets::standard_layout(
output = teal.widgets::plot_with_settings_ui(id = ns("myplot")),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c("arm_var", "paramcd", "subgroup_var", "strata_var", "aval_var", "cnsr_var")]),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Select Endpoint",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("aval_var"),
label = "Analysis Variable",
data_extract_spec = a$aval_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("cnsr_var"),
label = "Censor Variable",
data_extract_spec = a$cnsr_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
uiOutput(
ns("arms_buckets"),
title = paste(
"Multiple reference groups are automatically combined into a single group when more than one",
"value is selected."
)
),
teal.transform::data_extract_ui(
id = ns("subgroup_var"),
label = "Subgroup Variables",
data_extract_spec = a$subgroup_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("strata_var"),
label = "Stratify by",
data_extract_spec = a$strata_var,
is_single_dataset = is_single_dataset_value
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "plot")),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional plot settings",
teal.widgets::optionalSelectInput(
ns("conf_level"),
"Level of Confidence",
a$conf_level$choices,
a$conf_level$selected,
multiple = FALSE,
fixed = a$conf_level$fixed
),
checkboxInput(ns("fixed_symbol_size"), "Fixed symbol size", value = TRUE),
teal.transform::data_extract_ui(
id = ns("time_unit_var"),
label = "Time Unit Variable",
data_extract_spec = a$time_unit_var,
is_single_dataset = is_single_dataset_value
),
teal.widgets::optionalSliderInputValMinMax(
ns("rel_width_forest"),
"Relative Width of Forest Plot (%)",
a$rel_width_forest,
ticks = FALSE, step = 1
),
teal.widgets::optionalSliderInputValMinMax(
ns("font_size"),
"Table Font Size",
a$font_size,
ticks = FALSE, step = 1
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_g_forest_tte <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
arm_var,
arm_ref_comp,
paramcd,
subgroup_var,
strata_var,
aval_var,
cnsr_var,
time_unit_var,
stats,
riskdiff,
plot_height,
plot_width,
ggplot2_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
# Setup arm variable selection, default reference arms, and default
# comparison arms for encoding panel
iv_arm_ref <- arm_ref_comp_observer(
session,
input,
output,
id_arm_var = extract_input("arm_var", parentname),
data = data()[[parentname]],
arm_ref_comp = arm_ref_comp,
module = "tm_g_forest_tte"
)
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(
arm_var = arm_var,
paramcd = paramcd,
subgroup_var = subgroup_var,
strata_var = strata_var,
aval_var = aval_var,
cnsr_var = cnsr_var,
time_unit_var = time_unit_var
),
datasets = data,
select_validation_rule = list(
aval_var = shinyvalidate::sv_required("An analysis variable is required"),
cnsr_var = shinyvalidate::sv_required("A censor variable is required"),
arm_var = shinyvalidate::sv_required("A treatment variable is required")
),
filter_validation_rule = list(
paramcd = shinyvalidate::sv_required(message = "Please select Endpoint filter.")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule("conf_level", shinyvalidate::sv_required("Please choose a confidence level"))
iv$add_rule(
"conf_level",
shinyvalidate::sv_between(0, 1, message_fmt = "Confidence level must be between 0 and 1")
)
iv$add_validator(iv_arm_ref)
teal.transform::compose_and_enable_validators(iv, selector_list, c("arm_var", "aval_var", "paramcd"))
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var, subgroup_var = subgroup_var, strata_var = strata_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- anl_q()[[parentname]]
anl_filtered <- anl_q()[[dataname]]
anl <- anl_q()[["ANL"]]
anl_m <- anl_inputs()
input_arm_var <- as.vector(anl_m$columns_source$arm_var)
input_aval_var <- as.vector(anl_m$columns_source$aval_var)
input_cnsr_var <- as.vector(anl_m$columns_source$cnsr_var)
input_subgroup_var <- as.vector(anl_m$columns_source$subgroup_var)
input_strata_var <- as.vector(anl_m$columns_source$strata_var)
input_time_unit_var <- as.vector(anl_m$columns_source$time_unit_var)
input_paramcd <- unlist(paramcd$filter)["vars_selected"]
# validate inputs
validate_args <- list(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var, input_subgroup_var, input_strata_var),
anl = anl_filtered,
anlvars = c("USUBJID", "STUDYID", input_paramcd, input_aval_var, input_cnsr_var, input_time_unit_var),
arm_var = input_arm_var
)
# validate arm levels
if (length(input_arm_var) > 0 && length(unique(adsl_filtered[[input_arm_var]])) == 1) {
validate_args <- append(validate_args, list(min_n_levels_armvar = NULL))
}
validate_args <- append(
validate_args, list(ref_arm = unlist(input$buckets$Ref), comp_arm = unlist(input$buckets$Comp))
)
if (length(input_subgroup_var) > 0) {
validate(
need(
all(vapply(adsl_filtered[, input_subgroup_var], is.factor, logical(1))),
"Not all subgroup variables are factors."
)
)
}
if (length(input_strata_var) > 0) {
validate(
need(
all(vapply(adsl_filtered[, input_strata_var], is.factor, logical(1))),
"Not all stratification variables are factors."
)
)
}
do.call(what = "validate_standard_inputs", validate_args)
validate(need(
length(anl[[input_paramcd]]) > 0,
"Value of the endpoint variable should not be empty."
))
NULL
})
# The R-code corresponding to the analysis.
all_q <- reactive({
validate_checks()
anl_m <- anl_inputs()
strata_var <- as.vector(anl_m$columns_source$strata_var)
subgroup_var <- as.vector(anl_m$columns_source$subgroup_var)
resolved_paramcd <- teal.transform::resolve_delayed(paramcd, as.list(data()))
obj_var_name <- get_g_forest_obj_var_name(resolved_paramcd, input)
my_calls <- template_forest_tte(
dataname = "ANL",
parentname = "ANL_ADSL",
arm_var = as.vector(anl_m$columns_source$arm_var),
ref_arm = unlist(input$buckets$Ref),
comp_arm = unlist(input$buckets$Comp),
obj_var_name = obj_var_name,
aval_var = as.vector(anl_m$columns_source$aval_var),
cnsr_var = as.vector(anl_m$columns_source$cnsr_var),
subgroup_var = if (length(subgroup_var) != 0) subgroup_var else NULL,
strata_var = if (length(strata_var) != 0) strata_var else NULL,
stats = stats,
riskdiff = riskdiff,
conf_level = as.numeric(input$conf_level),
col_symbol_size = if (!input$fixed_symbol_size) 1,
time_unit_var = as.vector(anl_m$columns_source$time_unit_var),
font_size = input$font_size,
ggplot2_args = ggplot2_args
)
teal.code::eval_code(anl_q(), as.expression(unlist(my_calls)))
})
# Outputs to render.
decorated_all_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "plot"),
expr = print(plot)
)
plot_r <- reactive({
cowplot::plot_grid(
decorated_all_q()[["table"]],
decorated_all_q()[["plot"]],
align = "h",
axis = "tblr",
rel_widths = c(1 - input$rel_width_forest / 100, input$rel_width_forest / 100)
)
})
pws <- teal.widgets::plot_with_settings_srv(
id = "myplot",
plot_r = plot_r,
height = plot_height,
width = plot_width
)
# Render R code
source_code_r <- reactive(teal.code::get_code(req(decorated_all_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = "R Code for the Current Time-to-Event Forest Plot"
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Forest Survival Plot",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Plot", "header3")
card$append_plot(plot_r(), dim = pws$dim())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.