Nothing
#' Template: Line Plot
#'
#' Creates a valid expression to generate a [ggplot2::ggplot()] line plot.
#'
#' @inheritParams tern::g_lineplot
#' @inheritParams tern::control_lineplot_vars
#' @inheritParams template_arguments
#' @param strata `r lifecycle::badge("deprecated")` Please use the `group_var` argument instead.
#' @param group_var (`string` or `NA`)\cr group variable name.
#' @param param (`character`)\cr parameter to filter the data by.
#' @param incl_screen (`logical`)\cr whether the screening visit should be included.
#' @param ggplot2_args (`ggplot2_args`) optional\cr object created by [teal.widgets::ggplot2_args()] with settings
#' for the module plot. For this module, this argument will only accept `ggplot2_args` object with `labs` list of
#' following child elements: `title`, `subtitle`, `caption`, `y`, `lty`. No other elements would be taken into
#' account. The argument is merged with option `teal.ggplot2_args` and with default module arguments (hard coded in
#' the module body).
#'
#' For more details, see the vignette: `vignette("custom-ggplot2-arguments", package = "teal.widgets")`.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_g_lineplot()]
#'
#' @keywords internal
template_g_lineplot <- function(dataname = "ANL",
strata = lifecycle::deprecated(),
group_var = "ARM",
x = "AVISIT",
y = "AVAL",
y_unit = "AVALU",
paramcd = "PARAMCD",
param = "ALT",
mid = "mean",
interval = "mean_ci",
whiskers = c("mean_ci_lwr", "mean_ci_upr"),
table = c("n", "mean_sd", "median", "range"),
mid_type = "pl",
conf_level = 0.95,
incl_screen = TRUE,
mid_point_size = 2,
table_font_size = 4,
title = "Line Plot",
y_lab = "",
ggplot2_args = teal.widgets::ggplot2_args()) {
if (lifecycle::is_present(strata)) {
warning(
"The `strata` argument of `template_g_lineplot()` is deprecated as of teal.modules.clinical 0.9.1. ",
"Please use the `group_var` argument instead.",
call. = FALSE
)
group_var <- strata
}
checkmate::assert_string(dataname)
checkmate::assert_string(group_var)
checkmate::assert_string(x)
checkmate::assert_string(y)
checkmate::assert_string(y_unit)
checkmate::assert_string(paramcd)
checkmate::assert_string(title)
checkmate::assert_string(y_lab)
z <- list()
data_list <- list()
data_list <- add_expr(
data_list,
substitute(
expr = anl,
env = list(anl = as.name(dataname))
)
)
if (!incl_screen) {
data_list <- add_expr(
data_list,
substitute_names(
expr = dplyr::filter(x_var != "SCREENING") %>%
dplyr::mutate(x_var = factor(x_var)),
names = list(x_var = as.name(x))
)
)
}
# droplevels for group_var
data_list <- add_expr(
data_list,
substitute_names(
expr = dplyr::mutate(
arm_var = droplevels(arm_var)
),
names = list(
arm_var = as.name(group_var)
)
)
)
z$data <- substitute(
expr = {
anl <- data_pipe
},
env = list(
data_pipe = pipe_expr(data_list)
)
)
z$variables <- substitute(
expr = variables <- control_lineplot_vars(x = x, y = y, group_var = arm, paramcd = paramcd, y_unit = y_unit),
env = list(x = x, y = y, arm = group_var, paramcd = paramcd, y_unit = y_unit)
)
mid_choices <- c(
"Mean" = "mean",
"Median" = "median"
)
interval_choices <- c(
"Mean Confidence Interval" = "mean_ci",
"Median Confidence Interval" = "median_ci",
"25% and 75% Quantiles" = "quantiles",
"Range" = "range"
)
graph_list <- list()
graph_list <- add_expr(
graph_list,
quote(grid::grid.newpage())
)
all_ggplot2_args <- teal.widgets::resolve_ggplot2_args(
user_plot = ggplot2_args,
module_plot = teal.widgets::ggplot2_args(
labs = list(
title = paste0(
"Plot of ", names(which(mid_choices == mid)),
if (!is.null(interval)) {
paste0(
" and ",
if (interval %in% c("mean_ci", "median_ci")) paste0(conf_level * 100, "% "),
names(which(interval_choices == interval))
)
},
" of ", y, " by Visit"
),
subtitle = "",
y = sprintf("%s %s Values for", y, names(which(mid_choices == mid)))
)
)
)
plot_call <- substitute(
g_lineplot(
df = anl,
variables = variables,
interval = interval,
mid = mid,
whiskers = whiskers,
table = table,
mid_type = mid_type,
mid_point_size = mid_point_size,
table_font_size = table_font_size,
newpage = FALSE,
title = ggplot2_args_title,
subtitle = ggplot2_args_subtitle,
caption = ggplot2_args_caption,
y_lab = ggplot2_args_ylab,
legend_title = ggplot2_args_legend_title,
ggtheme = ggplot2::theme_minimal(),
control = control_analyze_vars(conf_level = conf_level),
subtitle_add_paramcd = FALSE,
subtitle_add_unit = FALSE
),
env = list(
conf_level = conf_level,
interval = interval,
mid = mid,
whiskers = whiskers,
table = table,
mid_type = mid_type,
mid_choices = mid_choices,
interval_choices = interval_choices,
mid_point_size = mid_point_size,
table_font_size = table_font_size,
y = y,
ggplot2_args_title = all_ggplot2_args$labs$title,
ggplot2_args_subtitle = all_ggplot2_args$labs$subtitle,
ggplot2_args_caption = all_ggplot2_args$labs$caption,
ggplot2_args_ylab = all_ggplot2_args$labs$y,
ggplot2_args_legend_title = all_ggplot2_args$labs$lty
)
)
graph_list <- add_expr(
graph_list,
substitute(
expr = plot <- plot_call,
env = list(plot_call = plot_call)
)
)
z$graph <- bracket_expr(graph_list)
z
}
#' teal Module: Line Plot
#'
#' This module produces a [ggplot2::ggplot()] type line plot, with optional summary table, for standard ADaM data.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_g_lineplot
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `plot` (`ggplot`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_g_lineplot(
#' ..., # arguments for module
#' decorators = list(
#' plot = teal_transform_module(...) # applied only to `plot` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(nestcolor)
#' library(dplyr)
#' library(forcats)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADLB <- tmc_ex_adlb %>%
#' mutate(AVISIT == fct_reorder(AVISIT, AVISITN, min))
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADLB <- data[["ADLB"]]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_lineplot(
#' label = "Line Plot",
#' dataname = "ADLB",
#' group_var = choices_selected(
#' variable_choices(ADSL, c("ARM", "ARMCD", "ACTARMCD")),
#' "ARM"
#' ),
#' y = choices_selected(
#' variable_choices(ADLB, c("AVAL", "BASE", "CHG", "PCHG")),
#' "AVAL"
#' ),
#' param = choices_selected(
#' value_choices(ADLB, "PARAMCD", "PARAM"),
#' "ALT"
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_g_lineplot <- function(label,
dataname,
parentname = NULL,
strata = lifecycle::deprecated(),
group_var = teal.transform::choices_selected(
teal.transform::variable_choices(parentname, c("ARM", "ARMCD", "ACTARMCD")), "ARM"
),
x = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVISIT"), "AVISIT",
fixed = TRUE
),
y = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, c("AVAL", "BASE", "CHG", "PCHG")), "AVAL"
),
y_unit = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVALU"), "AVALU",
fixed = TRUE
),
paramcd = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "PARAMCD"), "PARAMCD",
fixed = TRUE
),
param = teal.transform::choices_selected(
teal.transform::value_choices(dataname, "PARAMCD", "PARAM"), "ALT"
),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order = TRUE),
interval = "mean_ci",
mid = "mean",
whiskers = c("mean_ci_lwr", "mean_ci_upr"),
table = c("n", "mean_sd", "median", "range"),
mid_type = "pl",
mid_point_size = c(2, 1, 5),
table_font_size = c(4, 2, 6),
plot_height = c(1000L, 200L, 4000L),
plot_width = NULL,
pre_output = NULL,
post_output = NULL,
ggplot2_args = teal.widgets::ggplot2_args(),
transformators = list(),
decorators = list()) {
if (lifecycle::is_present(strata)) {
warning(
"The `strata` argument of `tm_g_lineplot()` is deprecated as of teal.modules.clinical 0.9.1. ",
"Please use the `group_var` argument instead.",
call. = FALSE
)
group_var <- strata
} else {
strata <- group_var # resolves missing argument error
}
# Now handle 'parentname' calculation based on 'group_var'
if (is.null(parentname)) {
parentname <- ifelse(
inherits(group_var, "data_extract_spec"),
teal.transform::datanames_input(group_var),
"ADSL"
)
}
message("Initializing tm_g_lineplot")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_string(mid)
checkmate::assert_string(interval, null.ok = TRUE)
whiskers <- match.arg(whiskers)
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(conf_level, "choices_selected")
checkmate::assert_numeric(plot_height, len = 3, any.missing = FALSE, finite = TRUE)
checkmate::assert_numeric(plot_height[1], lower = plot_height[2], upper = plot_height[3], .var.name = "plot_height")
checkmate::assert_numeric(plot_width, len = 3, any.missing = FALSE, null.ok = TRUE, finite = TRUE)
checkmate::assert_numeric(
plot_width[1],
lower = plot_width[2], upper = plot_width[3], null.ok = TRUE, .var.name = "plot_width"
)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(ggplot2_args, "ggplot2_args")
assert_decorators(decorators, "plot")
args <- as.list(environment())
data_extract_list <- list(
group_var = cs_to_des_select(group_var, dataname = parentname),
param = cs_to_des_filter(param, dataname = dataname),
x = cs_to_des_select(x, dataname = dataname, multiple = FALSE),
y = cs_to_des_select(y, dataname = dataname, multiple = FALSE),
y_unit = cs_to_des_select(y_unit, dataname = dataname),
paramcd = cs_to_des_select(paramcd, dataname = dataname)
)
module(
label = label,
server = srv_g_lineplot,
ui = ui_g_lineplot,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
label = label,
parentname = parentname,
plot_height = plot_height,
plot_width = plot_width,
ggplot2_args = ggplot2_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_g_lineplot <- function(id, ...) {
a <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(
a$group_var,
a$paramcd,
a$x,
a$param,
a$y,
a$y_unit
)
ns <- NS(id)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(
verbatimTextOutput(outputId = ns("text")),
teal.widgets::plot_with_settings_ui(
id = ns("myplot")
)
),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c("group_var", "paramcd", "x", "y", "y_unit", "param")]),
teal.transform::data_extract_ui(
id = ns("param"),
label = "Select Biomarker",
data_extract_spec = a$param,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("group_var"),
label = "Select Treatment Variable",
data_extract_spec = a$group_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("y"),
label = "Analysis Variable",
data_extract_spec = a$y,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("x"),
label = "Time Variable",
data_extract_spec = a$x,
is_single_dataset = is_single_dataset_value
),
selectInput(
ns("mid"),
"Midpoint Statistic",
choices = c(
"Mean" = "mean",
"Median" = "median"
),
selected = "mean"
),
teal.widgets::optionalSelectInput(
ns("interval"),
"Interval",
choices = c(
"Mean CI" = "mean_ci",
"Median CI" = "median_ci",
"25% and 75%-ile" = "quantiles",
"Min - Max" = "range"
),
selected = "mean_ci"
),
checkboxInput(
ns("incl_screen"),
"Include screening visit",
value = TRUE
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "plot")),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional plot settings",
teal.widgets::optionalSelectInput(
ns("conf_level"),
"Level of Confidence",
a$conf_level$choices,
a$conf_level$selected,
multiple = FALSE,
fixed = a$conf_level$fixed
),
teal.widgets::optionalSliderInputValMinMax(
ns("mid_point_size"),
"Midpoint symbol size",
a$mid_point_size,
ticks = FALSE
),
checkboxGroupInput(
ns("whiskers"),
"Whiskers to display",
choices = c("Upper", "Lower"),
selected = c("Upper", "Lower")
),
radioButtons(
ns("mid_type"),
label = "Plot type",
choices = c(
"Point and line" = "pl",
"Point" = "p",
"Line" = "l"
),
selected = "pl"
),
teal.transform::data_extract_ui(
id = ns("y_unit"),
label = "Analysis Unit Variable",
data_extract_spec = a$y_unit,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Parameter Code Variable",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
)
)
),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional table settings",
teal.widgets::optionalSliderInputValMinMax(
ns("table_font_size"),
"Table Font Size",
a$table_font_size,
ticks = FALSE
),
checkboxGroupInput(
ns("table"),
label = "Choose the statistics to display in the table",
choices = c(
"n" = "n",
"Mean (SD)" = "mean_sd",
"Mean CI" = "mean_ci",
"Median" = "median",
"Median CI" = "median_ci",
"25% and 75%-ile" = "quantiles",
"Min - Max" = "range"
),
selected = a$table,
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_g_lineplot <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
paramcd,
group_var,
x,
y,
param,
y_unit,
label,
plot_height,
plot_width,
ggplot2_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(x = x, y = y, group_var = group_var, paramcd = paramcd, y_unit = y_unit, param = param),
datasets = data,
select_validation_rule = list(
x = shinyvalidate::sv_required("Please select a time variable"),
y = shinyvalidate::sv_required("Please select an analysis variable"),
group_var = shinyvalidate::sv_required("Please select a treatment variable")
),
filter_validation_rule = list(
param = shinyvalidate::sv_required(message = "Please select Biomarker filter.")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule("conf_level", shinyvalidate::sv_required("Please choose a confidence level"))
iv$add_rule(
"conf_level",
shinyvalidate::sv_between(
0, 1,
message_fmt = "Please choose a confidence level between 0 and 1", inclusive = c(FALSE, FALSE)
)
)
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr))
})
merged <- list(anl_input_r = anl_inputs, anl_q = anl_q)
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- merged$anl_q()[[parentname]]
anl_filtered <- merged$anl_q()[[dataname]]
input_strata <- names(merged$anl_input_r()$columns_source$group_var)
input_x_var <- names(merged$anl_input_r()$columns_source$x)
input_y <- names(merged$anl_input_r()$columns_source$y)
input_param <- unlist(param$filter)["vars_selected"]
input_paramcd <- names(merged$anl_input_r()$columns_source$paramcd)
input_y_unit <- names(merged$anl_input_r()$columns_source$y_unit)
# validate inputs
validate_args <- list(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_strata),
anl = anl_filtered,
anlvars = c("USUBJID", "STUDYID", input_paramcd, input_x_var, input_y, input_y_unit, input_param),
arm_var = input_strata
)
# validate arm levels
if (length(input_strata) > 0 && length(unique(adsl_filtered[[input_strata]])) == 1) {
validate_args <- append(validate_args, list(min_n_levels_armvar = NULL))
}
do.call(what = "validate_standard_inputs", validate_args)
NULL
})
all_q <- reactive({
validate_checks()
ANL <- merged$anl_q()[["ANL"]]
teal::validate_has_data(ANL, 2)
whiskers_selected <- if ("Lower" %in% input$whiskers) 1 else NULL
if ("Upper" %in% input$whiskers) whiskers_selected <- c(whiskers_selected, 2)
if (is.null(input$interval) || is.null(whiskers_selected)) {
input_whiskers <- NULL
input_interval <- NULL
} else {
input_interval <- input$interval
input_whiskers <- names(tern::s_summary(0)[[input_interval]][whiskers_selected])
}
input_param <- as.character(unique(ANL[[names(merged$anl_input_r()$columns_source$param)[1]]]))
my_calls <- template_g_lineplot(
dataname = "ANL",
group_var = names(merged$anl_input_r()$columns_source$group_var),
y = names(merged$anl_input_r()$columns_source$y),
x = names(merged$anl_input_r()$columns_source$x),
paramcd = names(merged$anl_input_r()$columns_source$paramcd),
y_unit = names(merged$anl_input_r()$columns_source$y_unit),
conf_level = as.numeric(input$conf_level),
incl_screen = input$incl_screen,
mid = input$mid,
interval = input_interval,
whiskers = input_whiskers,
table = input$table,
mid_type = input$mid_type,
mid_point_size = input$mid_point_size,
table_font_size = input$table_font_size,
ggplot2_args = ggplot2_args
)
teal.code::eval_code(merged$anl_q(), as.expression(unlist(my_calls)))
})
decorated_all_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "plot"),
expr = print(plot)
)
plot_r <- reactive(decorated_all_q()[["plot"]])
# Insert the plot into a plot with settings module from teal.widgets
pws <- teal.widgets::plot_with_settings_srv(
id = "myplot",
plot_r = plot_r,
height = plot_height,
width = plot_width
)
# Render R code
source_code_r <- reactive(teal.code::get_code(req(decorated_all_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Line Plot",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Plot", "header3")
card$append_plot(plot_r(), dim = pws$dim())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.