Nothing
#' Template: Laboratory test results with highest grade post-baseline
#'
#' Creates a valid expression to generate a table to summarize abnormality by grade.
#'
#' @inheritParams template_arguments
#' @param atoxgr_var (`character`)\cr name of the variable indicating
#' Analysis Toxicity Grade.
#' @param worst_high_flag_var (`character`)\cr name of the variable indicating
#' Worst High Grade flag
#' @param worst_low_flag_var (`character`)\cr name of the variable indicating
#' Worst Low Grade flag
#' @param worst_flag_indicator (`character`)\cr flag value indicating the worst grade.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_abnormality_by_worst_grade()]
#' @keywords internal
template_abnormality_by_worst_grade <- function(parentname, # nolint: object_length.
dataname,
arm_var,
id_var = "USUBJID",
paramcd = "PARAMCD",
atoxgr_var = "ATOXGR",
worst_high_flag_var = "WGRHIFL",
worst_low_flag_var = "WGRLOFL",
worst_flag_indicator = "Y",
add_total = FALSE,
total_label = default_total_label(),
drop_arm_levels = TRUE,
basic_table_args = teal.widgets::basic_table_args()) {
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_string(arm_var)
checkmate::assert_string(id_var)
checkmate::assert_string(paramcd)
checkmate::assert_string(atoxgr_var)
checkmate::assert_string(worst_high_flag_var)
checkmate::assert_string(worst_low_flag_var)
checkmate::assert_string(worst_flag_indicator)
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_flag(drop_arm_levels)
y <- list()
data_list <- list()
data_list <- add_expr(
data_list,
substitute(
expr = anl_labels <- teal.data::col_labels(df, fill = FALSE),
env = list(
df = as.name(dataname)
)
)
)
data_list <- add_expr(
data_list,
substitute(
expr = anl <- df %>%
dplyr::mutate(
# Changed the following prepo step methodology as not
# all cases have grade = 4 (realized with nsdl real data)
GRADE_DIR = factor(
dplyr::case_when(
as.numeric(as.character(atoxgr_var)) < 0 ~ "LOW",
atoxgr_var == "0" ~ "ZERO",
as.numeric(as.character(atoxgr_var)) > 0 ~ "HIGH"
),
levels = c("LOW", "ZERO", "HIGH")
),
# Changed the following prepo step methodology as not
# all cases have grade = 4 (realized with nsdl real data)
GRADE_ANL = factor(
abs(
as.numeric(
as.character(atoxgr_var)
)
)
)
) %>%
dplyr::filter(worst_low_flag_var == worst_flag_indicator | worst_high_flag_var == worst_flag_indicator) %>%
droplevels(),
env = list(
df = as.name(dataname),
worst_low_flag_var = as.name(worst_low_flag_var),
worst_high_flag_var = as.name(worst_high_flag_var),
worst_flag_indicator = worst_flag_indicator,
atoxgr_var = as.name(atoxgr_var)
)
)
)
data_list <- add_expr(
data_list,
quote(
expr = teal.data::col_labels(anl) <- c(
anl_labels,
GRADE_DIR = " Direction of Abnormality",
GRADE_ANL = "Highest Grade"
)
)
)
data_list <- add_expr(
data_list,
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = arm_var,
drop_arm_levels = drop_arm_levels
)
)
data_list <- add_expr(
data_list,
substitute(
expr = if (is.null(obj_label(anl[[paramcd]]))) {
stop("Please specify label for ", paramcd)
},
env = list(
paramcd = paramcd
)
)
)
y$data <- bracket_expr(data_list)
# map creation
prep_list <- list()
prep_list <- add_expr(
prep_list,
substitute(
expr = map <- expand.grid(
PARAM = levels(anl[[paramcd]]),
GRADE_DIR = c("LOW", "HIGH"),
GRADE_ANL = as.character(1:4),
stringsAsFactors = FALSE
) %>%
dplyr::arrange(paramcd, desc(GRADE_DIR), GRADE_ANL),
env = list(
paramcd = paramcd
)
)
)
y$layout_prep <- bracket_expr(prep_list)
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(show_colcounts = TRUE)
)
)
# layout start
layout_list <- list()
layout_list <- add_expr(
layout_list,
if (add_total) {
substitute(
expr = expr_basic_table_args %>%
rtables::split_cols_by(
var = arm_var,
split_fun = add_overall_level(label = total_label, first = FALSE)
),
env = list(
arm_var = arm_var,
total_label = total_label,
expr_basic_table_args = parsed_basic_table_args
)
)
} else {
substitute(
expr = expr_basic_table_args %>%
rtables::split_cols_by(var = arm_var),
env = list(arm_var = arm_var, expr_basic_table_args = parsed_basic_table_args)
)
}
)
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::split_rows_by(
paramcd,
label_pos = "topleft",
split_label = obj_label(anl[[paramcd]])
) %>%
summarize_num_patients(
var = id_var,
required = "GRADE_ANL",
.stats = "unique_count"
) %>%
rtables::split_rows_by(
"GRADE_DIR",
label_pos = "topleft",
split_fun = trim_levels_to_map(map = map),
split_label = obj_label(anl$GRADE_DIR)
) %>%
count_abnormal_by_worst_grade(
var = "GRADE_ANL",
variables = list(id = id_var, param = paramcd, grade_dir = "GRADE_DIR"),
.indent_mods = 4L
) %>%
rtables::append_topleft(" Highest Grade"),
env = list(
paramcd = paramcd,
id_var = id_var
)
)
)
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
y$table <- substitute(
expr = {
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = parent)
},
env = list(parent = as.name(parentname))
)
y
}
#' teal Module: Laboratory test results with highest grade post-baseline
#'
#' This module produces a table to summarize laboratory test results with highest grade post-baseline
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_abnormality_by_worst_grade
#' @param atoxgr_var ([teal.transform::choices_selected()])\cr
#' object with all available choices and preselected option
#' for variable names that can be used as Analysis Toxicity Grade.
#' @param worst_high_flag_var ([teal.transform::choices_selected()])\cr
#' object with all available choices and preselected option for variable names that can be used as Worst High
#' Grade flag.
#' @param worst_low_flag_var ([teal.transform::choices_selected()])\cr
#' object with all available choices and preselected option for variable names that can be used as Worst Low Grade flag.
#' @param worst_flag_indicator ([teal.transform::choices_selected()])\cr
#' value indicating worst grade.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_abnormality_by_worst_grade(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @export
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(dplyr)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADLB <- tmc_ex_adlb %>%
#' filter(!AVISIT %in% c("SCREENING", "BASELINE"))
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADLB <- data[["ADLB"]]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_abnormality_by_worst_grade(
#' label = "Laboratory Test Results with Highest Grade Post-Baseline",
#' dataname = "ADLB",
#' arm_var = choices_selected(
#' choices = variable_choices(ADSL, subset = c("ARM", "ARMCD")),
#' selected = "ARM"
#' ),
#' paramcd = choices_selected(
#' choices = value_choices(ADLB, "PARAMCD", "PARAM"),
#' selected = c("ALT", "CRP", "IGA")
#' ),
#' add_total = FALSE
#' )
#' ),
#' filter = teal_slices(
#' teal_slice("ADSL", "SAFFL", selected = "Y"),
#' teal_slice("ADLB", "ONTRTFL", selected = "Y")
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
tm_t_abnormality_by_worst_grade <- function(label, # nolint: object_length.
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
id_var = teal.transform::choices_selected(
teal.transform::variable_choices(
dataname,
subset = "USUBJID"
),
selected = "USUBJID", fixed = TRUE
),
paramcd,
atoxgr_var = teal.transform::choices_selected(
teal.transform::variable_choices(
dataname,
subset = "ATOXGR"
),
selected = "ATOXGR", fixed = TRUE
),
worst_high_flag_var = teal.transform::choices_selected(
teal.transform::variable_choices(
dataname,
subset = "WGRHIFL"
),
selected = "WGRHIFL", fixed = TRUE
),
worst_low_flag_var = teal.transform::choices_selected(
teal.transform::variable_choices(
dataname,
subset = "WGRLOFL"
),
selected = "WGRLOFL", fixed = TRUE
),
worst_flag_indicator = teal.transform::choices_selected("Y"),
add_total = TRUE,
total_label = default_total_label(),
drop_arm_levels = TRUE,
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_abnormality_by_worst_grade")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_string(total_label)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(id_var, "choices_selected")
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(atoxgr_var, "choices_selected")
checkmate::assert_class(worst_high_flag_var, "choices_selected")
checkmate::assert_class(worst_low_flag_var, "choices_selected")
checkmate::assert_class(worst_flag_indicator, "choices_selected")
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
id_var = cs_to_des_select(id_var, dataname = dataname),
paramcd = cs_to_des_filter(paramcd, dataname = dataname, multiple = TRUE),
atoxgr_var = cs_to_des_select(atoxgr_var, dataname = dataname),
worst_high_flag_var = cs_to_des_select(worst_high_flag_var, dataname = dataname),
worst_low_flag_var = cs_to_des_select(worst_low_flag_var, dataname = dataname)
)
args <- as.list(environment())
module(
label = label,
ui = ui_t_abnormality_by_worst_grade,
server = srv_t_abnormality_by_worst_grade,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
label = label,
worst_flag_indicator = worst_flag_indicator,
total_label = total_label,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_t_abnormality_by_worst_grade <- function(id, ...) { # nolint: object_length.
ns <- NS(id)
a <- list(...) # module args
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$id_var,
a$paramcd,
a$atoxgr_var,
a$worst_high_flag_var,
a$worst_low_flag_var,
a$worst_flag_indicator
)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(teal.widgets::table_with_settings_ui(ns("table"))),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(
a[c(
"arm_var",
"id_var",
"paramcd",
"atoxgr_var",
"worst_high_flag_var",
"worst_low_flag_var",
"worst_flag_indicator"
)]
),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
checkboxInput(ns("add_total"), "Add All Patients column", value = FALSE),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Select Lab Parameter",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("atoxgr_var"),
label = "Analysis toxicity grade",
data_extract_spec = a$atoxgr_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("worst_low_flag_var"),
label = "Worst low flag variable",
data_extract_spec = a$worst_low_flag_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("worst_high_flag_var"),
label = "Worst high flag variable",
data_extract_spec = a$worst_high_flag_var,
is_single_dataset = is_single_dataset_value
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table")),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional table settings",
teal.transform::data_extract_ui(
id = ns("id_var"),
label = "Subject Identifier",
data_extract_spec = a$id_var,
is_single_dataset = is_single_dataset_value
),
teal.widgets::optionalSelectInput(
ns("worst_flag_indicator"),
label = "Value Indicating Worst Grade",
multiple = FALSE,
fixed_on_single = TRUE
),
checkboxInput(
ns("drop_arm_levels"),
label = "Drop columns not in filtered analysis dataset",
value = a$drop_arm_levels
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_t_abnormality_by_worst_grade <- function(id, # nolint: object_length.
data,
reporter,
filter_panel_api,
dataname,
parentname,
id_var,
arm_var,
paramcd,
atoxgr_var,
worst_flag_indicator,
worst_low_flag_var,
worst_high_flag_var,
add_total,
total_label,
drop_arm_levels,
label,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
isolate({
resolved <- teal.transform::resolve_delayed(worst_flag_indicator, as.list(data()))
teal.widgets::updateOptionalSelectInput(
session = session,
inputId = "worst_flag_indicator",
choices = resolved$choices,
selected = resolved$selected
)
})
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(
arm_var = arm_var,
id_var = id_var,
paramcd = paramcd,
atoxgr_var = atoxgr_var,
worst_high_flag_var = worst_high_flag_var,
worst_low_flag_var = worst_low_flag_var
),
datasets = data,
select_validation_rule = list(
arm_var = shinyvalidate::sv_required("Please select a treatment variable."),
id_var = shinyvalidate::sv_required("Please select a Subject Identifier."),
atoxgr_var = shinyvalidate::sv_required("Please select Analysis Toxicity Grade variable."),
worst_low_flag_var = shinyvalidate::sv_required("Please select the Worst Low Grade flag variable."),
worst_high_flag_var = shinyvalidate::sv_required("Please select the Worst High Grade flag variable.")
),
filter_validation_rule = list(
paramcd = shinyvalidate::sv_required("Please select at least one Laboratory parameter.")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
teal.transform::compose_and_enable_validators(iv, selector_list)
iv$add_rule(
"worst_flag_indicator",
~ if (length(.) == 0) {
"Please select the value indicating worst grade."
}
)
})
anl_inputs <- teal.transform::merge_expression_srv(
selector_list = selector_list,
datasets = data,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
validate_checks <- reactive({
adsl_filtered <- merged$anl_q()[[parentname]]
anl_filtered <- merged$anl_q()[[dataname]]
anl <- merged$anl_q()[["ANL"]]
input_arm_var <- names(merged$anl_input_r()$columns_source$arm_var)
input_paramcd_var <- names(merged$anl_input_r()$columns_source$paramcd)
input_atoxgr <- names(merged$anl_input_r()$columns_source$atoxgr_var)
input_worst_high_flag_var <- names(merged$anl_input_r()$columns_source$worst_high_flag_var)
input_worst_low_flag_var <- names(merged$anl_input_r()$columns_source$worst_low_flag_var)
teal::validate_inputs(iv_r())
if (length(input_paramcd_var) > 0) {
validate(
need(
is.factor(anl[[input_paramcd_var]]),
"Parameter variable should be a factor."
)
)
}
if (length(input_atoxgr) > 0) {
validate(
need(
all(as.character(unique(anl[[input_atoxgr]])) %in% as.character(c(-4:4))),
"All grade values should be within -4:4 range."
),
need(
is.factor(anl[[input_atoxgr]]),
"Grade variable should be a factor."
),
need(
all(sapply(1:4, function(y) any(abs(as.numeric(as.character(anl[[input_atoxgr]]))) == y))),
paste(
"To display the table there must be at least one record for",
"each highest grade (in either direction).\n\n",
"Please remove filter(s) or select a different lab parameter."
)
)
)
}
if (length(input_atoxgr) > 0) {
validate(
need(
is.factor(anl[[input_atoxgr]]),
"Treatment variable should be a factor."
),
)
}
# validate inputs
validate_standard_inputs(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var),
anl = anl_filtered,
anlvars = c(
"USUBJID", "STUDYID", input_paramcd_var,
input_atoxgr, input_worst_high_flag_var,
input_worst_low_flag_var
),
arm_var = input_arm_var
)
})
all_q <- reactive({
validate_checks()
my_calls <- template_abnormality_by_worst_grade(
parentname = "ANL_ADSL",
dataname = "ANL",
arm_var = names(merged$anl_input_r()$columns_source$arm_var),
id_var = names(merged$anl_input_r()$columns_source$id_var),
paramcd = names(merged$anl_input_r()$columns_source$paramcd),
atoxgr_var = names(merged$anl_input_r()$columns_source$atoxgr_var),
worst_high_flag_var = names(merged$anl_input_r()$columns_source$worst_high_flag_var),
worst_low_flag_var = names(merged$anl_input_r()$columns_source$worst_low_flag_var),
worst_flag_indicator = input$worst_flag_indicator,
add_total = input$add_total,
total_label = total_label,
drop_arm_levels = input$drop_arm_levels,
basic_table_args = basic_table_args
)
teal.code::eval_code(merged$anl_q(), as.expression(unlist(my_calls)))
})
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
# Outputs to render.
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Laboratory Test Results Table",
label = label,
description = "Laboratory test results with highest grade post-baseline Table",
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.