Nothing
#' Template: Events by Term
#'
#' Creates a valid expression to generate a table of events by term.
#'
#' @inheritParams template_arguments
#' @param sort_freq_col (`character`)\cr column to sort by frequency on if `sort_criteria` is set to `freq_desc`.
#' @param incl_overall_sum (`flag`)\cr whether two rows which summarize the overall number of adverse events
#' should be included at the top of the table.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_events()]
#'
#' @keywords internal
template_events <- function(dataname,
parentname,
arm_var,
hlt,
llt,
label_hlt = NULL,
label_llt = NULL,
add_total = TRUE,
total_label = default_total_label(),
na_level = default_na_str(),
event_type = "event",
sort_criteria = c("freq_desc", "alpha"),
sort_freq_col = total_label,
prune_freq = 0,
prune_diff = 0,
drop_arm_levels = TRUE,
incl_overall_sum = TRUE,
basic_table_args = teal.widgets::basic_table_args()) {
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_character(arm_var, min.len = 1, max.len = 2)
checkmate::assert_string(hlt, null.ok = TRUE)
checkmate::assert_string(llt, null.ok = TRUE)
checkmate::assert_string(label_hlt, null.ok = TRUE)
checkmate::assert_string(label_llt, null.ok = TRUE)
checkmate::assert_character(c(llt, hlt))
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_string(na_level)
checkmate::assert_string(event_type)
checkmate::assert_flag(drop_arm_levels)
checkmate::assert_scalar(prune_freq)
checkmate::assert_scalar(prune_diff)
sort_criteria <- match.arg(sort_criteria)
y <- list()
# Start data steps.
data_list <- list()
data_list <- add_expr(
data_list,
substitute(
expr = anl <- df,
env = list(df = as.name(dataname))
)
)
data_list <- add_expr(
data_list,
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = arm_var[[1]],
drop_arm_levels = drop_arm_levels
)
)
if (length(arm_var) == 2) {
data_list <- add_expr(
data_list,
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = arm_var[[2]],
drop_arm_levels = drop_arm_levels
)
)
}
data_list <- add_expr(
data_list,
substitute(
expr = parentname <- df_explicit_na(parentname, na_level = na_lvl),
env = list(parentname = as.name(parentname), na_lvl = na_level)
)
)
if (sort_criteria == "alpha") {
if (!is.null(hlt)) {
data_list <- add_expr(
data_list,
substitute(
expr = anl[[hlt]] <- as.character(anl[[hlt]]),
env = list(hlt = hlt)
)
)
}
if (!is.null(llt)) {
data_list <- add_expr(
data_list,
substitute(
expr = anl[[llt]] <- as.character(anl[[llt]]),
env = list(llt = llt)
)
)
}
}
term_vars <- c(hlt, llt)
data_list <- add_expr(
data_list,
substitute(
expr = anl <- anl %>%
df_explicit_na(omit_columns = setdiff(names(anl), term_vars)),
env = list(
term_vars = term_vars
)
)
)
y$data <- bracket_expr(data_list)
# Start layout steps.
layout_list <- list()
basic_title <- if (is.null(hlt) && !is.null(llt)) {
paste0("Event Summary by Term : ", label_llt)
} else if (!is.null(hlt) && is.null(llt)) {
paste0("Event Summary by Term : ", label_hlt)
} else if (!is.null(hlt) && !is.null(llt)) {
paste0("Event Summary by Term : ", label_hlt, " and ", label_llt)
} else {
"Event Summary by Term"
}
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(show_colcounts = TRUE, title = basic_title)
)
)
layout_list <- add_expr(layout_list, parsed_basic_table_args)
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::split_cols_by(var = arm_var),
env = list(arm_var = arm_var[[1]])
)
)
if (length(arm_var) == 2) {
layout_list <- add_expr(
layout_list,
if (drop_arm_levels) {
substitute(
expr = rtables::split_cols_by(nested_col, split_fun = drop_split_levels),
env = list(nested_col = arm_var[[2]])
)
} else {
substitute(
expr = rtables::split_cols_by(nested_col),
env = list(nested_col = arm_var[[2]])
)
}
)
}
if (add_total) {
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::add_overall_col(label = total_label),
env = list(total_label = total_label)
)
)
}
unique_label <- paste0("Total number of patients with at least one ", event_type)
nonunique_label <- paste0("Overall total number of ", event_type, "s")
if (incl_overall_sum) {
layout_list <- add_expr(
layout_list,
substitute(
summarize_num_patients(
var = "USUBJID",
.stats = c("unique", "nonunique"),
.labels = c(
unique = unique_label,
nonunique = nonunique_label
),
na_str = na_str
),
env = list(unique_label = unique_label, nonunique_label = nonunique_label, na_str = na_level)
)
)
}
one_term <- is.null(hlt) || is.null(llt)
if (one_term) {
term_var <- ifelse(is.null(hlt), llt, hlt)
layout_list <- add_expr(
layout_list,
substitute(
expr = count_occurrences(vars = term_var, .indent_mods = -1L) %>%
append_varlabels(dataname, term_var),
env = list(
term_var = term_var,
dataname = as.name(dataname)
)
)
)
} else {
# Case when both hlt and llt are used.
y$layout_prep <- quote(split_fun <- drop_split_levels)
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::split_rows_by(
hlt,
child_labels = "visible",
nested = FALSE,
indent_mod = -1L,
split_fun = split_fun,
label_pos = "topleft",
split_label = teal.data::col_labels(dataname[hlt])
) %>%
summarize_num_patients(
var = "USUBJID",
.stats = c("unique", "nonunique"),
.labels = c(
unique = unique_label,
nonunique = nonunique_label
),
na_str = na_str
) %>%
count_occurrences(vars = llt, .indent_mods = c(count_fraction = 1L)) %>%
append_varlabels(dataname, llt, indent = 1L),
env = list(
dataname = as.name(dataname),
hlt = hlt,
llt = llt,
unique_label = unique_label,
nonunique_label = nonunique_label,
na_str = na_level
)
)
)
}
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
# Full table.
y$table <- substitute(
expr = table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = parent),
env = list(parent = as.name(parentname))
)
# Start pruning table.
prune_list <- list()
prune_list <- add_expr(
prune_list,
quote(
pruned_result <- rtables::prune_table(table)
)
)
if (prune_freq > 0 || prune_diff > 0) {
# Do not use "All Patients" column for pruning conditions.
prune_list <- add_expr(
prune_list,
substitute(
expr = col_indices <- 1:(ncol(table) - add_total),
env = list(add_total = add_total)
)
)
if (prune_freq > 0 && prune_diff == 0) {
prune_list <- add_expr(
prune_list,
substitute(
expr = row_condition <- has_fraction_in_any_col(atleast = prune_freq, col_indices = col_indices),
env = list(prune_freq = prune_freq)
)
)
} else if (prune_freq == 0 && prune_diff > 0) {
prune_list <- add_expr(
prune_list,
substitute(
expr = row_condition <- has_fractions_difference(atleast = prune_diff, col_indices = col_indices),
env = list(prune_diff = prune_diff)
)
)
} else if (prune_freq > 0 && prune_diff > 0) {
prune_list <- add_expr(
prune_list,
substitute(
expr = row_condition <- has_fraction_in_any_col(atleast = prune_freq, col_indices = col_indices) &
has_fractions_difference(atleast = prune_diff, col_indices = col_indices),
env = list(prune_freq = prune_freq, prune_diff = prune_diff)
)
)
}
# Apply pruning conditions.
prune_list <- add_expr(
prune_list,
substitute(
expr = pruned_result <- pruned_result %>% rtables::prune_table(keep_rows(row_condition))
)
)
}
y$prune <- bracket_expr(prune_list)
# Start sorting pruned table.
sort_list <- list()
if (sort_criteria == "alpha") {
if (prune_freq == 0 && prune_diff == 0) {
# This is just a dummy step to get the right variable result.
# No additional sorting is needed because during the data pre-processing step,
# llt and/or hlt are converted to factors with alphabetically sorted levels.
# So the order in y$table table is already alphabetically sorted.
sort_list <- add_expr(
sort_list,
quote({
pruned_and_sorted_result <- pruned_result
pruned_and_sorted_result
})
)
} else {
sort_list <- add_expr(
sort_list,
quote(
criteria_fun <- function(tr) {
inherits(tr, "ContentRow")
}
)
)
sort_list <- add_expr(
sort_list,
quote({
pruned_and_sorted_result <- rtables::trim_rows(pruned_result, criteria = criteria_fun)
pruned_and_sorted_result
})
)
}
} else {
# Sort by decreasing frequency.
sort_list <- add_expr(
sort_list,
substitute(
expr = idx_split_col <- which(sapply(col_paths(table), tail, 1) == sort_freq_col),
env = list(sort_freq_col = sort_freq_col)
)
)
# When the "All Patients" column is present we only use that for scoring.
scorefun_hlt <- if (add_total) {
quote(cont_n_onecol(idx_split_col))
} else {
quote(cont_n_allcols)
}
scorefun_llt <- if (add_total) {
quote(score_occurrences_cols(col_indices = seq(1, ncol(table))))
} else {
quote(score_occurrences)
}
if (one_term) {
term_var <- ifelse(is.null(hlt), llt, hlt)
sort_list <- add_expr(
sort_list,
substitute(
expr = {
pruned_and_sorted_result <- pruned_result %>%
sort_at_path(path = c(term_var), scorefun = scorefun_llt)
pruned_and_sorted_result
},
env = list(
term_var = term_var,
scorefun_llt = scorefun_llt
)
)
)
} else {
sort_list <- add_expr(
sort_list,
substitute(
expr = {
pruned_and_sorted_result <- pruned_result %>%
sort_at_path(path = c(hlt), scorefun = scorefun_hlt) %>%
sort_at_path(path = c(hlt, "*", llt), scorefun = scorefun_llt)
},
env = list(
llt = llt,
hlt = hlt,
scorefun_hlt = scorefun_hlt,
scorefun_llt = scorefun_llt
)
)
)
if (prune_freq > 0 || prune_diff > 0) {
sort_list <- add_expr(
sort_list,
quote(
criteria_fun <- function(tr) {
inherits(tr, "ContentRow")
}
)
)
sort_list <- add_expr(
sort_list,
quote(
pruned_and_sorted_result <- rtables::trim_rows(pruned_and_sorted_result, criteria = criteria_fun)
)
)
}
sort_list <- add_expr(
sort_list,
quote(pruned_and_sorted_result)
)
}
}
y$sort <- bracket_expr(sort_list)
y
}
#' teal Module: Events by Term
#'
#' This module produces a table of events by term.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_events
#' @param arm_var ([teal.transform::choices_selected()])\cr object with all
#' available choices and preselected option for variable names that can be used as `arm_var`.
#' It defines the grouping variable(s) in the results table.
#' If there are two elements selected for `arm_var`,
#' second variable will be nested under the first variable.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` as created from `rtables::build_table`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_events(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADAE <- tmc_ex_adae
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADAE <- data[["ADAE"]]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_events(
#' label = "Adverse Event Table",
#' dataname = "ADAE",
#' arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"),
#' llt = choices_selected(
#' choices = variable_choices(ADAE, c("AETERM", "AEDECOD")),
#' selected = c("AEDECOD")
#' ),
#' hlt = choices_selected(
#' choices = variable_choices(ADAE, c("AEBODSYS", "AESOC")),
#' selected = "AEBODSYS"
#' ),
#' add_total = TRUE,
#' event_type = "adverse event"
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_t_events <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
hlt,
llt,
add_total = TRUE,
total_label = default_total_label(),
na_level = default_na_str(),
event_type = "event",
sort_criteria = c("freq_desc", "alpha"),
sort_freq_col = total_label,
prune_freq = 0,
prune_diff = 0,
drop_arm_levels = TRUE,
incl_overall_sum = TRUE,
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_events")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(hlt, "choices_selected")
checkmate::assert_class(llt, "choices_selected")
checkmate::assert_string(event_type)
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_string(na_level)
checkmate::assert_string(sort_freq_col)
checkmate::assert_scalar(prune_freq)
checkmate::assert_scalar(prune_diff)
checkmate::assert_flag(drop_arm_levels)
checkmate::assert_flag(incl_overall_sum)
sort_criteria <- match.arg(sort_criteria)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname, multiple = TRUE, ordered = TRUE),
hlt = cs_to_des_select(hlt, dataname = dataname),
llt = cs_to_des_select(llt, dataname = dataname)
)
module(
label = label,
ui = ui_t_events_byterm,
server = srv_t_events_byterm,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
event_type = event_type,
label = label,
total_label = total_label,
na_level = na_level,
sort_freq_col = sort_freq_col,
incl_overall_sum = incl_overall_sum,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_t_events_byterm <- function(id, ...) {
ns <- NS(id)
a <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(a$arm_var, a$hlt, a$llt)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(
teal.widgets::table_with_settings_ui(ns("table"))
),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c("arm_var", "hlt", "llt")]),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("hlt"),
label = "Event High Level Term",
data_extract_spec = a$hlt,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("llt"),
label = "Event Low Level Term",
data_extract_spec = a$llt,
is_single_dataset = is_single_dataset_value
),
checkboxInput(ns("add_total"), "Add All Patients columns", value = a$add_total),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table")),
teal.widgets::panel_item(
"Additional table settings",
checkboxInput(
ns("drop_arm_levels"),
label = "Drop columns not in filtered analysis dataset",
value = a$drop_arm_levels
),
selectInput(
inputId = ns("sort_criteria"),
label = "Sort Criteria",
choices = c(
"Decreasing frequency" = "freq_desc",
"Alphabetically" = "alpha"
),
selected = a$sort_criteria,
multiple = FALSE
),
helpText(tags$strong("Pruning Options:")),
numericInput(
inputId = ns("prune_freq"),
label = "Minimum Incidence Rate(%) in any of the treatment groups",
value = a$prune_freq,
min = 0,
max = 100,
step = 1,
width = "100%"
),
numericInput(
inputId = ns("prune_diff"),
label = "Minimum Difference Rate(%) between any of the treatment groups",
value = a$prune_diff,
min = 0,
max = 100,
step = 1,
width = "100%"
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_t_events_byterm <- function(id,
data,
filter_panel_api,
reporter,
dataname,
parentname,
event_type,
arm_var,
hlt,
llt,
drop_arm_levels,
incl_overall_sum,
label,
total_label,
na_level,
sort_freq_col,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(arm_var = arm_var, hlt = hlt, llt = llt),
datasets = data,
select_validation_rule = list(
arm_var = ~ if (length(.) != 1 && length(.) != 2) {
"Please select 1 or 2 treatment variable values"
},
hlt = ~ if (length(selector_list()$llt()$select) + length(.) == 0) {
"Please select at least one of \"LOW LEVEL TERM\" or \"HIGH LEVEL TERM\" variables."
},
llt = ~ if (length(selector_list()$hlt()$select) + length(.) == 0) {
"Please select at least one of \"LOW LEVEL TERM\" or \"HIGH LEVEL TERM\" variables."
}
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule("prune_freq", shinyvalidate::sv_required("Please provide an Incidence Rate between 0 and 100 (%)."))
iv$add_rule(
"prune_freq",
shinyvalidate::sv_between(0, 100, message_fmt = "Please provide an Incidence Rate between 0 and 100 (%).")
)
iv$add_rule("prune_diff", shinyvalidate::sv_required("Please provide a Difference Rate between 0 and 100 (%)."))
iv$add_rule(
"prune_diff",
shinyvalidate::sv_between(0, 100, message_fmt = "Please provide a Difference Rate between 0 and 100 (%).")
)
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- merged$anl_q()[[parentname]]
anl_filtered <- merged$anl_q()[[dataname]]
input_arm_var <- as.vector(merged$anl_input_r()$columns_source$arm_var)
input_level_term <- c(
as.vector(merged$anl_input_r()$columns_source$hlt),
as.vector(merged$anl_input_r()$columns_source$llt)
)
validate(
if (length(input_arm_var) >= 1) {
need(is.factor(adsl_filtered[[input_arm_var[[1]]]]), "Treatment variable is not a factor.")
},
if (length(input_arm_var) == 2) {
need(
is.factor(adsl_filtered[[input_arm_var[[2]]]]) & all(!adsl_filtered[[input_arm_var[[2]]]] %in% c(
"", NA
)),
"Please check nested treatment variable which needs to be a factor without NA or empty strings."
)
}
)
# validate inputs
validate_standard_inputs(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var),
anl = anl_filtered,
anlvars = c("USUBJID", "STUDYID", input_level_term),
arm_var = input_arm_var[[1]]
)
})
# The R-code corresponding to the analysis.
table_q <- reactive({
validate_checks()
ANL <- merged$anl_q()[["ANL"]]
input_hlt <- as.vector(merged$anl_input_r()$columns_source$hlt)
input_llt <- as.vector(merged$anl_input_r()$columns_source$llt)
label_hlt <- if (length(input_hlt) != 0) attributes(ANL[[input_hlt]])$label else NULL
label_llt <- if (length(input_llt) != 0) attributes(ANL[[input_llt]])$label else NULL
my_calls <- template_events(
dataname = "ANL",
parentname = "ANL_ADSL",
arm_var = as.vector(merged$anl_input_r()$columns_source$arm_var),
hlt = if (length(input_hlt) != 0) input_hlt else NULL,
llt = if (length(input_llt) != 0) input_llt else NULL,
label_hlt = label_hlt,
label_llt = label_llt,
add_total = input$add_total,
total_label = total_label,
na_level = na_level,
event_type = event_type,
sort_criteria = input$sort_criteria,
sort_freq_col = sort_freq_col,
prune_freq = input$prune_freq / 100,
prune_diff = input$prune_diff / 100,
drop_arm_levels = input$drop_arm_levels,
incl_overall_sum = incl_overall_sum,
basic_table_args = basic_table_args
)
teal.code::eval_code(merged$anl_q(), as.expression(unlist(my_calls)))
})
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = table_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
# Outputs to render.
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Events by Term Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.