Nothing
#' Template: Events by Grade
#'
#' Creates a valid expression to generate a table to summarize events by grade.
#'
#' @inheritParams template_arguments
#' @param id (`character`)\cr unique identifier of patients in datasets, default to `"USUBJID"`.
#' @param grade (`character`)\cr name of the severity level variable.
#' @param label_grade (`string`)\cr label of the `grade` variable from `dataname`. The label will be extracted from the
#' module.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_events_by_grade()]
#'
#' @keywords internal
template_events_by_grade <- function(dataname,
parentname,
arm_var,
id = "",
hlt,
llt,
label_hlt = NULL,
label_llt = NULL,
grade,
label_grade = NULL,
prune_freq = 0,
prune_diff = 0,
add_total = TRUE,
total_label = default_total_label(),
na_level = default_na_str(),
drop_arm_levels = TRUE,
basic_table_args = teal.widgets::basic_table_args()) {
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_string(arm_var)
checkmate::assert_string(hlt, null.ok = TRUE)
checkmate::assert_string(llt, null.ok = TRUE)
if (is.null(hlt) && is.null(llt)) stop("At least one of 'hlt' or 'llt' can not be empty.")
checkmate::assert_string(label_hlt, null.ok = TRUE)
checkmate::assert_string(label_llt, null.ok = TRUE)
checkmate::assert_string(grade)
checkmate::assert_string(label_grade, null.ok = TRUE)
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_string(na_level)
checkmate::assert_flag(drop_arm_levels)
checkmate::assert_scalar(prune_freq)
checkmate::assert_scalar(prune_diff)
y <- list()
data_list <- list()
data_list <- add_expr(
data_list,
substitute(
expr = anl <- dataname,
env = list(
dataname = as.name(dataname)
)
)
)
data_list <- add_expr(
data_list,
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = arm_var,
drop_arm_levels = drop_arm_levels
)
)
data_list <- add_expr(
data_list,
substitute(
expr = dataname <- df_explicit_na(dataname, na_level = na_str),
env = list(dataname = as.name(dataname), na_str = na_level)
)
)
data_list <- add_expr(
data_list,
substitute(
expr = dataname <- df_explicit_na(dataname, na_level = na_str),
env = list(dataname = as.name("anl"), na_str = na_level)
)
)
data_list <- add_expr(
data_list,
substitute(
expr = parentname <- df_explicit_na(parentname, na_level = na_str),
env = list(parentname = as.name(parentname), na_str = na_level)
)
)
data_list <- add_expr(
data_list,
substitute(
expr = grade_groups <- list("- Any Intensity -" = levels(dataname$grade)),
env = list(
dataname = as.name(dataname),
grade = grade
)
)
)
y$data <- bracket_expr(data_list)
y$layout_prep <- quote(split_fun <- trim_levels_in_group)
layout_list <- list()
basic_title <- if (is.null(hlt) && !is.null(llt)) {
paste0("Adverse Event summary by ", label_grade, ": ", label_llt)
} else if (!is.null(hlt) && is.null(llt)) {
paste0("Adverse Event summary by ", label_grade, ": ", label_hlt)
} else if (!is.null(hlt) && !is.null(llt)) {
paste0("Adverse Event summary by ", label_grade, ": ", label_hlt, " and ", label_llt)
} else {
paste0("Adverse Event summary by ", label_grade)
}
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(show_colcounts = TRUE, title = basic_title)
)
)
layout_list <- add_expr(
layout_list,
parsed_basic_table_args
)
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::split_cols_by(arm_var),
env = list(arm_var = arm_var)
)
)
if (add_total) {
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::add_overall_col(label = total_label),
env = list(total_label = total_label)
)
)
}
one_term <- is.null(hlt) || is.null(llt)
if (one_term) {
term_var <- ifelse(is.null(hlt), llt, hlt)
layout_list <- add_expr(
layout_list,
substitute(
expr = summarize_occurrences_by_grade(
var = grade,
grade_groups = grade_groups,
na_str = na_str
) %>%
rtables::split_rows_by(
term_var,
child_labels = "visible",
nested = TRUE,
indent_mod = -1L,
split_fun = split_fun(grade),
label_pos = "topleft",
split_label = teal.data::col_labels(dataname[term_var])
) %>%
summarize_num_patients(
var = id,
.stats = "unique",
.labels = c("- Any Intensity -"),
na_str = na_str
) %>%
count_occurrences_by_grade(var = grade, .indent_mods = -1L, na_str = na_str) %>%
append_varlabels(dataname, grade, indent = 1L),
env = list(
id = id,
arm_var = arm_var,
term_var = term_var,
grade = grade,
dataname = as.name(dataname),
na_str = na_level
)
)
)
} else {
layout_list <- add_expr(
layout_list,
substitute(
expr = summarize_occurrences_by_grade(
var = grade,
grade_groups = grade_groups,
na_str = na_str
) %>%
rtables::split_rows_by(
hlt,
child_labels = "visible",
nested = TRUE,
indent_mod = -1L,
split_fun = split_fun(grade),
label_pos = "topleft",
split_label = teal.data::col_labels(dataname[hlt])
) %>%
summarize_occurrences_by_grade(
var = grade,
grade_groups = grade_groups,
na_str = na_str
) %>%
rtables::split_rows_by(
llt,
child_labels = "visible",
nested = TRUE,
indent_mod = -1L,
split_fun = split_fun(grade),
label_pos = "topleft",
split_label = teal.data::col_labels(dataname[llt])
) %>%
summarize_num_patients(
var = id,
.stats = "unique",
.labels = c("- Any Intensity -"),
na_str = na_str
) %>%
count_occurrences_by_grade(var = grade, .indent_mods = -1L, na_str = na_str) %>%
append_varlabels(dataname, grade, indent = 2L),
env = list(
id = id,
arm_var = arm_var,
hlt = hlt,
llt = llt,
grade = grade,
dataname = as.name(dataname),
na_str = na_level
)
)
)
}
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
# Full table.
y$table <- substitute(
expr = result <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = parent),
env = list(parent = as.name(parentname))
)
# Start pruning table.
prune_list <- list()
prune_list <- add_expr(
prune_list,
quote(
pruned_result <- result
)
)
if (prune_freq > 0 || prune_diff > 0) {
# Do not use "All Patients" column for pruning conditions.
prune_list <- add_expr(
prune_list,
substitute(
expr = col_indices <- 1:(ncol(result) - add_total),
env = list(add_total = add_total)
)
)
if (prune_freq > 0 && prune_diff == 0) {
prune_list <- add_expr(
prune_list,
substitute(
expr = row_condition <- has_fraction_in_any_col(atleast = prune_freq, col_indices = col_indices),
env = list(prune_freq = prune_freq)
)
)
} else if (prune_freq == 0 && prune_diff > 0) {
prune_list <- add_expr(
prune_list,
substitute(
expr = row_condition <- has_fractions_difference(atleast = prune_diff, col_indices = col_indices),
env = list(prune_diff = prune_diff)
)
)
} else if (prune_freq > 0 && prune_diff > 0) {
prune_list <- add_expr(
prune_list,
substitute(
expr = row_condition <- has_fraction_in_any_col(atleast = prune_freq, col_indices = col_indices) &
has_fractions_difference(atleast = prune_diff, col_indices = col_indices),
env = list(prune_freq = prune_freq, prune_diff = prune_diff)
)
)
}
# Apply pruning conditions.
prune_list <- add_expr(
prune_list,
substitute(
expr = pruned_result <- pruned_result %>% rtables::prune_table(keep_content_rows(row_condition))
)
)
}
y$prune <- bracket_expr(prune_list)
# Start sort the pruned table.
sort_list <- list()
scorefun <- if (add_total) {
substitute(
expr = cont_n_onecol(length(levels(parent$arm_var)) + 1),
env = list(
parent = as.name(parentname),
arm_var = as.name(arm_var)
)
)
} else {
quote(cont_n_allcols)
}
if (one_term) {
term_var <- ifelse(is.null(hlt), llt, hlt)
sort_list <- add_expr(
sort_list,
substitute(
expr = {
pruned_and_sorted_result <- pruned_result %>%
sort_at_path(path = term_var, scorefun = scorefun, decreasing = TRUE)
},
env = list(
term_var = term_var,
scorefun = scorefun
)
)
)
} else {
sort_list <- add_expr(
sort_list,
substitute(
expr = {
pruned_and_sorted_result <- pruned_result %>%
sort_at_path(path = hlt, scorefun = scorefun, decreasing = TRUE) %>%
sort_at_path(path = c(hlt, "*", llt), scorefun = scorefun, decreasing = TRUE)
},
env = list(
llt = llt,
hlt = hlt,
scorefun = scorefun
)
)
)
}
y$sort <- bracket_expr(sort_list)
y
}
#' Template: Adverse Events Grouped by Grade with Threshold
#'
#' Creates a valid expression to generate a table to summarize adverse events grouped by grade.
#'
#' @inheritParams template_arguments
#' @param id (`character`)\cr name of variable to uniquely identify patients in datasets.
#' @param grade (`character`)\cr name of grade variable to base `grading_groups` on.
#' @param label_grade (`character`)\cr label of the `grade` variable from `dataname`.
#' @param grading_groups (`list`)\cr named list of grading groups.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_events_by_grade()]
#' @keywords internal
#'
template_events_col_by_grade <- function(dataname,
parentname,
arm_var,
grading_groups = list(
"Any Grade (%)" = c("1", "2", "3", "4", "5"),
"Grade 1-2 (%)" = c("1", "2"),
"Grade 3-4 (%)" = c("3", "4"),
"Grade 5 (%)" = "5"
),
add_total = TRUE,
total_label = default_total_label(),
id = "USUBJID",
hlt,
llt,
label_hlt = NULL,
label_llt = NULL,
grade = "AETOXGR",
label_grade = NULL,
prune_freq = 0.1,
prune_diff = 0,
na_level = default_na_str(),
drop_arm_levels = TRUE,
basic_table_args = teal.widgets::basic_table_args()) {
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_string(arm_var)
checkmate::assert_list(grading_groups)
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_string(id)
checkmate::assert_string(hlt, null.ok = TRUE)
checkmate::assert_string(llt)
checkmate::assert_string(grade)
checkmate::assert_string(label_hlt, null.ok = TRUE)
checkmate::assert_string(label_llt, null.ok = TRUE)
checkmate::assert_string(label_grade, null.ok = TRUE)
checkmate::assert_string(na_level)
checkmate::assert_flag(drop_arm_levels)
checkmate::assert_scalar(prune_freq)
checkmate::assert_scalar(prune_diff)
y <- list()
# Start data steps.
data_list <- list()
data_list <- add_expr(
data_list,
substitute(
expr = anl <- df,
env = list(df = as.name(dataname))
)
)
data_list <- add_expr(
data_list,
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = arm_var,
drop_arm_levels = drop_arm_levels
)
)
## add_total for patients grouping across all arms
if (add_total) {
data_list <- add_expr(
data_list,
substitute(
col_counts <- rep(c(table(parentname[[arm_var]]), nrow(parentname)), each = length(grading_groups)),
env = list(parentname = as.name(parentname), grading_groups = grading_groups, arm_var = arm_var)
)
)
} else {
data_list <- add_expr(
data_list,
substitute(
col_counts <- rep(table(parentname[[arm_var]]), each = length(grading_groups)),
env = list(parentname = as.name(parentname), grading_groups = grading_groups, arm_var = arm_var)
)
)
}
data_pipe <- list()
if (!is.null(hlt)) {
data_pipe <- add_expr(
data_pipe,
substitute(
expr = anl <- anl %>% dplyr::group_by(id, arm_var, hlt, llt),
env = list(id = as.name(id), arm_var = as.name(arm_var), hlt = as.name(hlt), llt = as.name(llt))
)
)
} else {
data_pipe <- add_expr(
data_pipe,
substitute(
expr = anl <- anl %>% dplyr::group_by(id, arm_var, llt),
env = list(id = as.name(id), arm_var = as.name(arm_var), llt = as.name(llt))
)
)
}
data_pipe <- add_expr(
data_pipe,
substitute(
expr = dplyr::summarize(MAXAETOXGR = factor(max(as.numeric(grade)))),
env = list(grade = as.name(grade))
)
)
data_pipe <- add_expr(
data_pipe,
quote(dplyr::ungroup())
)
data_pipe <- add_expr(
data_pipe,
substitute(
expr = df_explicit_na(na_level = na_str),
env = list(na_str = na_level)
)
)
data_pipe <- pipe_expr(data_pipe)
data_list <- add_expr(
data_list,
data_pipe
)
y$data <- bracket_expr(data_list)
layout_list <- list()
basic_title <- if (is.null(hlt) && !is.null(llt)) {
paste0("Adverse Event summary by ", label_grade, ": ", label_llt)
} else if (!is.null(hlt) && is.null(llt)) {
paste0("Adverse Event summary by ", label_grade, ": ", label_hlt)
} else if (!is.null(hlt) && !is.null(llt)) {
paste0("Adverse Event summary by ", label_grade, ": ", label_hlt, " and ", label_llt)
} else {
paste0("Adverse Event summary by ", label_grade)
}
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(title = basic_title)
)
)
# Start layout steps.
layout_list <- list()
layout_list <- add_expr(
layout_list,
parsed_basic_table_args
)
if (add_total) {
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::split_cols_by(var = arm_var, split_fun = add_overall_level(total_label, first = FALSE)),
env = list(
arm_var = arm_var,
total_label = total_label
)
)
)
} else {
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::split_cols_by(var = arm_var),
env = list(arm_var = arm_var)
)
)
}
layout_list <- add_expr(
layout_list,
substitute(
expr = split_cols_by_groups("MAXAETOXGR", groups = grading_groups),
env = list(grading_groups = grading_groups)
)
)
if (!is.null(hlt)) {
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::split_rows_by(
hlt,
child_labels = "visible",
nested = FALSE,
split_fun = trim_levels_in_group(llt)
),
env = list(hlt = hlt, llt = llt)
)
)
layout_list <- add_expr(
layout_list,
substitute(
expr = append_varlabels(df = anl, vars = hlt),
env = list(hlt = hlt)
)
)
unique_label <- paste0("Total number of patients with at least one adverse event")
layout_list <- add_expr(
layout_list,
substitute(
summarize_num_patients(
var = id,
.stats = "unique",
.labels = unique_label,
),
env = list(id = id, unique_label = unique_label)
)
)
}
layout_list <- add_expr(
layout_list,
substitute(
analyze_vars(
llt,
na.rm = FALSE,
denom = "N_col",
.stats = "count_fraction",
.formats = c(count_fraction = format_fraction_threshold(0.01))
),
env = list(llt = llt)
)
)
if (is.null(hlt)) {
layout_list <- add_expr(
layout_list,
substitute(
expr = append_varlabels(df = anl, vars = llt),
env = list(llt = llt)
)
)
} else {
layout_list <- add_expr(
layout_list,
substitute(
expr = append_varlabels(df = anl, vars = llt, indent = 1L),
env = list(llt = llt)
)
)
}
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
# Full table.
y$table <- quote(result <- rtables::build_table(lyt = lyt, df = anl, col_counts = col_counts))
# Start sorting table.
sort_list <- list()
sort_list <- add_expr(
sort_list,
substitute(
expr = lengths <- lapply(grading_groups, length),
env = list(grading_groups = grading_groups)
)
)
sort_list <- add_expr(
sort_list,
quote(start_index <- unname(which.max(lengths)))
)
sort_list <- add_expr(
sort_list,
substitute(
expr = col_indices <- seq(start_index, ncol(result), by = length(grading_groups)),
env = list(grading_groups = grading_groups)
)
)
if (!is.null(hlt)) {
sort_list <- add_expr(
sort_list,
quote(scorefun_soc <- score_occurrences_cont_cols(col_indices = col_indices))
)
}
sort_list <- add_expr(
sort_list,
quote(scorefun_term <- score_occurrences_cols(col_indices = col_indices))
)
if (is.null(hlt)) {
sort_list <- add_expr(
sort_list,
substitute(
expr = {
sorted_result <- result %>%
sort_at_path(path = c(llt), scorefun = scorefun_term, decreasing = TRUE)
},
env = list(llt = llt)
)
)
} else {
sort_list <- add_expr(
sort_list,
substitute(
expr = {
sorted_result <- result %>%
sort_at_path(path = c(hlt), scorefun = scorefun_soc, decreasing = TRUE) %>%
sort_at_path(path = c(hlt, "*", llt), scorefun = scorefun_term, decreasing = TRUE)
},
env = list(
hlt = hlt,
llt = llt
)
)
)
}
y$sort <- bracket_expr(sort_list)
# Start pruning table.
prune_list <- list()
prune_list <- add_expr(
prune_list,
quote(
criteria_fun <- function(tr) {
inherits(tr, "ContentRow")
}
)
)
if (prune_freq > 0) {
prune_list <- add_expr(
prune_list,
substitute(
expr = at_least_percent_any <- has_fraction_in_any_col(atleast = prune_freq, col_indices = col_indices),
env = list(prune_freq = prune_freq)
)
)
}
if (prune_diff > 0) {
prune_list <- add_expr(
prune_list,
substitute(
expr = at_least_percent_diff <- has_fractions_difference(atleast = prune_diff, col_indices = col_indices),
env = list(prune_diff = prune_diff)
)
)
}
prune_pipe <- list()
prune_pipe <- add_expr(
prune_pipe,
quote(
pruned_and_sorted_result <- sorted_result %>% rtables::trim_rows(criteria = criteria_fun)
)
)
if (prune_freq > 0 && prune_diff > 0) {
prune_pipe <- add_expr(
prune_pipe,
quote(rtables::prune_table(keep_rows(at_least_percent_any & at_least_percent_diff)))
)
} else if (prune_freq > 0 && prune_diff == 0) {
prune_pipe <- add_expr(
prune_pipe,
quote(rtables::prune_table(keep_rows(at_least_percent_any)))
)
} else if (prune_freq == 0 && prune_diff > 0) {
prune_pipe <- add_expr(
prune_pipe,
quote(rtables::prune_table(keep_rows(at_least_percent_diff)))
)
} else {
prune_pipe <- add_expr(
prune_pipe,
quote(rtables::prune_table())
)
}
prune_pipe <- pipe_expr(prune_pipe)
prune_list <- add_expr(
prune_list,
prune_pipe
)
y$prune <- bracket_expr(prune_list)
y
}
#' teal Module: Events by Grade
#'
#' This module produces a table to summarize events by grade.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_events_by_grade
#' @inheritParams template_events_col_by_grade
#' @param col_by_grade (`logical`)\cr whether to display the grading groups in nested columns.
#' @param grading_groups (`list`)\cr named list of grading groups used when `col_by_grade = TRUE`.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` as created from `rtables::build_table`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_events_by_grade(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @export
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(dplyr)
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' .lbls_adae <- col_labels(tmc_ex_adae)
#' ADAE <- tmc_ex_adae %>%
#' mutate_if(is.character, as.factor) #' be certain of having factors
#' col_labels(ADAE) <- .lbls_adae
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADAE <- data[["ADAE"]]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_events_by_grade(
#' label = "Adverse Events by Grade Table",
#' dataname = "ADAE",
#' arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"),
#' llt = choices_selected(
#' choices = variable_choices(ADAE, c("AETERM", "AEDECOD")),
#' selected = c("AEDECOD")
#' ),
#' hlt = choices_selected(
#' choices = variable_choices(ADAE, c("AEBODSYS", "AESOC")),
#' selected = "AEBODSYS"
#' ),
#' grade = choices_selected(
#' choices = variable_choices(ADAE, c("AETOXGR", "AESEV")),
#' selected = "AETOXGR"
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
tm_t_events_by_grade <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
hlt,
llt,
grade,
grading_groups = list(
"Any Grade (%)" = c("1", "2", "3", "4", "5"),
"Grade 1-2 (%)" = c("1", "2"),
"Grade 3-4 (%)" = c("3", "4"),
"Grade 5 (%)" = "5"
),
col_by_grade = FALSE,
prune_freq = 0,
prune_diff = 0,
add_total = TRUE,
total_label = default_total_label(),
na_level = default_na_str(),
drop_arm_levels = TRUE,
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_events_by_grade")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(hlt, "choices_selected")
checkmate::assert_class(llt, "choices_selected")
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_string(na_level)
checkmate::assert_flag(col_by_grade)
checkmate::assert_scalar(prune_freq)
checkmate::assert_scalar(prune_diff)
checkmate::assert_flag(drop_arm_levels)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
hlt = cs_to_des_select(hlt, dataname = dataname),
llt = cs_to_des_select(llt, dataname = dataname),
grade = cs_to_des_select(grade, dataname = dataname)
)
module(
label = label,
server = srv_t_events_by_grade,
ui = ui_t_events_by_grade,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
label = label,
total_label = total_label,
grading_groups = grading_groups,
na_level = na_level,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_t_events_by_grade <- function(id, ...) {
ns <- NS(id)
a <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(a$arm_var, a$hlt, a$llt, a$grade)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(teal.widgets::table_with_settings_ui(ns("table"))),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c("arm_var", "hlt", "llt", "grade")]),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("hlt"),
label = "Event High Level Term",
data_extract_spec = a$hlt,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("llt"),
label = "Event Low Level Term",
data_extract_spec = a$llt,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("grade"),
label = "Event Grade",
data_extract_spec = a$grade,
is_single_dataset = is_single_dataset_value
),
checkboxInput(
ns("add_total"),
"Add All Patients column",
value = a$add_total
),
checkboxInput(
ns("col_by_grade"),
"Display grade groupings in nested columns",
value = a$col_by_grade
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table")),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional table settings",
checkboxInput(
ns("drop_arm_levels"),
label = "Drop columns not in filtered analysis dataset",
value = a$drop_arm_levels
),
helpText("Pruning Options"),
numericInput(
inputId = ns("prune_freq"),
label = "Minimum Incidence Rate(%) in any of the treatment groups",
value = a$prune_freq,
min = 0,
max = 100,
step = 1,
width = "100%"
),
numericInput(
inputId = ns("prune_diff"),
label = "Minimum Difference Rate(%) between any of the treatment groups",
value = a$prune_diff,
min = 0,
max = 100,
step = 1,
width = "100%"
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_t_events_by_grade <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
label,
arm_var,
hlt,
llt,
grade,
col_by_grade,
grading_groups,
drop_arm_levels,
total_label,
na_level,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(arm_var = arm_var, hlt = hlt, llt = llt, grade = grade),
datasets = data,
select_validation_rule = list(
arm_var = shinyvalidate::sv_required("A treatment variable is required"),
grade = shinyvalidate::sv_required("An event grade is required"),
hlt = ~ if (length(selector_list()$llt()$select) + length(.) == 0) {
"Please select at least one of \"LOW LEVEL TERM\" or \"HIGH LEVEL TERM\" variables."
},
llt = shinyvalidate::compose_rules(
~ if (length(selector_list()$hlt()$select) + length(.) == 0) {
"Please select at least one of \"LOW LEVEL TERM\" or \"HIGH LEVEL TERM\" variables."
},
~ if (col_by_grade() && length(.) == 0) {
"Low Level Term must be present when grade groupings are displayed in nested columns."
}
)
)
)
col_by_grade <- reactive({
input$col_by_grade
})
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule(
"prune_freq", shinyvalidate::sv_required("Please provide an Incidence Rate between 0 and 100 (%).")
)
iv$add_rule(
"prune_freq",
shinyvalidate::sv_between(0, 100, message_fmt = "Please provide an Incidence Rate between 0 and 100 (%).")
)
iv$add_rule(
"prune_diff", shinyvalidate::sv_required("Please provide a Difference Rate between 0 and 100 (%).")
)
iv$add_rule(
"prune_diff",
shinyvalidate::sv_between(0, 100, message_fmt = "Please provide a Difference Rate between 0 and 100 (%).")
)
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- merged$anl_q()[[parentname]]
anl_filtered <- merged$anl_q()[[dataname]]
adsl_keys <- merged$adsl_input_r()$keys
checkmate::assert(
.var.name = "adsl_keys",
if ("USUBJID" %in% adsl_keys) TRUE else "Must contain \"USUBJID\""
)
input_arm_var <- as.vector(merged$anl_input_r()$columns_source$arm_var)
input_level_term <- c(
as.vector(merged$anl_input_r()$columns_source$hlt),
as.vector(merged$anl_input_r()$columns_source$llt)
)
input_grade <- as.vector(merged$anl_input_r()$columns_source$grade)
validate(
need(is.factor(adsl_filtered[[input_arm_var]]), "Treatment variable is not a factor.")
)
if (input$col_by_grade) {
validate(
need(
is.factor(anl_filtered[[input_grade]]) &&
all(as.character(unique(anl_filtered[[input_grade]])) %in% as.character(c(1:5))),
paste(
"Data includes records with grade levels outside of 1-5.",
"Please use filter panel to exclude from analysis in order to display grade grouping in nested columns."
)
)
)
} else {
validate(
need(
is.factor(anl_filtered[[input_grade]]),
"Event grade variable must be a factor."
)
)
}
# validate inputs
validate_standard_inputs(
adsl = adsl_filtered,
adslvars = c(adsl_keys, input_arm_var),
anl = anl_filtered,
anlvars = c(adsl_keys, input_level_term, input_grade),
arm_var = input_arm_var
)
})
# The R-code corresponding to the analysis.
table_q <- reactive({
validate_checks()
ANL <- merged$anl_q()[["ANL"]]
input_hlt <- as.vector(merged$anl_input_r()$columns_source$hlt)
input_llt <- as.vector(merged$anl_input_r()$columns_source$llt)
input_grade <- as.vector(merged$anl_input_r()$columns_source$grade)
label_hlt <- if (length(input_hlt) != 0) attributes(ANL[[input_hlt]])$label else NULL
label_llt <- if (length(input_llt) != 0) attributes(ANL[[input_llt]])$label else NULL
label_grade <- if (length(input_grade) != 0) attributes(ANL[[input_grade]])$label else NULL
label_grade <- if (is.null(label_grade)) input_grade else NULL
my_calls <- if (input$col_by_grade) {
template_events_col_by_grade(
dataname = "ANL",
parentname = "ANL_ADSL",
add_total = input$add_total,
total_label = total_label,
grading_groups = grading_groups,
arm_var = as.vector(merged$anl_input_r()$columns_source$arm_var),
id = "USUBJID",
hlt = if (length(input_hlt) != 0) input_hlt else NULL,
llt = if (length(input_llt) != 0) input_llt else NULL,
label_hlt = label_hlt,
label_llt = label_llt,
grade = if (length(input_grade) != 0) input_grade else NULL,
label_grade = label_grade,
prune_freq = input$prune_freq / 100,
prune_diff = input$prune_diff / 100,
na_level = na_level,
drop_arm_levels = input$drop_arm_levels,
basic_table_args = basic_table_args
)
} else {
template_events_by_grade(
dataname = "ANL",
parentname = "ANL_ADSL",
arm_var = as.vector(merged$anl_input_r()$columns_source$arm_var),
id = "USUBJID",
hlt = if (length(input_hlt) != 0) input_hlt else NULL,
llt = if (length(input_llt) != 0) input_llt else NULL,
label_hlt = label_hlt,
label_llt = label_llt,
grade = input_grade,
label_grade = label_grade,
prune_freq = input$prune_freq / 100,
prune_diff = input$prune_diff / 100,
add_total = input$add_total,
total_label = total_label,
na_level = na_level,
drop_arm_levels = input$drop_arm_levels,
basic_table_args = basic_table_args
)
}
teal.code::eval_code(merged$anl_q(), as.expression(unlist(my_calls)))
})
table_renamed_q <- reactive({
req(table_q())
teal.code::eval_code(table_q(), "table <- pruned_and_sorted_result")
})
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = table_renamed_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
# Outputs to render.
table_r <- reactive({
decorated_table_q()[["table"]]
})
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Events by Grade Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.