Nothing
#' Template: Adverse Events Summary
#'
#' Creates a valid expression to generate an adverse events summary table.
#'
#' @inheritParams template_arguments
#' @param dthfl_var (`character`)\cr name of variable for subject death flag from `parentname`.
#' Records with `"Y"` are summarized in the table row for "Total number of deaths".
#' @param dcsreas_var (`character`)\cr name of variable for study discontinuation reason from `parentname`.
#' Records with `"ADVERSE EVENTS"` are summarized in the table row for
#' "Total number of patients withdrawn from study due to an AE".
#' @param flag_var_anl (`character`)\cr name of flag variable from `dataset` used to count adverse event sub-groups
#' (e.g. Serious events, Related events, etc.). Variable labels are used as table row names if they exist.
#' @param flag_var_aesi (`character`)\cr name of flag variable from `dataset` used to count adverse event special
#' interest groups. All flag variables must be of type `logical`. Variable labels are used as table row names if
#' they exist.
#' @param aeseq_var (`character`)\cr name of variable for adverse events sequence number from `dataset`. Used for
#' counting total number of events.
#' @param count_dth (`logical`)\cr whether to show count of total deaths (based on `dthfl_var`). Defaults to `TRUE`.
#' @param count_wd (`logical`)\cr whether to show count of patients withdrawn from study due to an adverse event
#' (based on `dcsreas_var`). Defaults to `TRUE`.
#' @param count_subj (`logical`)\cr whether to show count of unique subjects (based on `USUBJID`). Only applies if
#' event flag variables are provided.
#' @param count_pt (`logical`)\cr whether to show count of unique preferred terms (based on `llt`). Only applies if
#' event flag variables are provided.
#' @param count_events (`logical`)\cr whether to show count of events (based on `aeseq_var`). Only applies if event
#' flag variables are provided.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_events_summary()]
#'
#' @keywords internal
template_events_summary <- function(anl_name,
parentname,
arm_var,
dthfl_var = "DTHFL",
dcsreas_var = "DCSREAS",
flag_var_anl = NULL,
flag_var_aesi = NULL,
aeseq_var = "AESEQ",
llt = "AEDECOD",
add_total = TRUE,
total_label = default_total_label(),
na_level = default_na_str(),
count_dth = TRUE,
count_wd = TRUE,
count_subj = TRUE,
count_pt = TRUE,
count_events = TRUE) {
checkmate::assert_string(anl_name)
checkmate::assert_string(parentname)
checkmate::assert_character(arm_var, min.len = 1, max.len = 2)
checkmate::assert_string(dthfl_var)
checkmate::assert_string(dcsreas_var)
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_string(na_level)
checkmate::assert_character(flag_var_anl, null.ok = TRUE)
checkmate::assert_character(flag_var_aesi, null.ok = TRUE)
checkmate::assert_string(aeseq_var)
checkmate::assert_string(llt)
checkmate::assert_flag(count_dth)
checkmate::assert_flag(count_wd)
checkmate::assert_flag(count_subj)
checkmate::assert_flag(count_pt)
checkmate::assert_flag(count_events)
y <- list()
data_list <- list()
data_list <- add_expr(
data_list,
substitute(
expr = anl <- anl_name,
env = list(anl_name = as.name(anl_name))
)
)
# Since this is a compound table with one layout based on `parentname`
# and one layout on `dataname`, columns will be filtered to match levels
# present in `parentname` only so `drop_arm_levels` = FALSE.
data_list <- add_expr(
data_list,
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = arm_var[[1]],
drop_arm_levels = FALSE
)
)
if (length(arm_var) == 2) {
data_list <- add_expr(
data_list,
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = arm_var[[2]],
drop_arm_levels = FALSE
)
)
}
data_list <- add_expr(
data_list,
quote(study_id <- unique(anl[["STUDYID"]]))
)
# Create dummy variable for counting patients with an AE
data_list <- add_expr(
data_list,
quote(anl$tmp_aefl <- "Y")
)
data_list <- add_expr(
data_list,
substitute(
expr = {
anl[[a]] <- as.character(anl[[a]])
anl <- anl %>%
dplyr::mutate(
USUBJID_AESEQ = paste(usubjid, aeseq_var, sep = "@@")
)
},
env = list(
a = llt,
usubjid = as.name("USUBJID"),
aeseq_var = as.name(aeseq_var)
)
)
)
if (length(flag_var_anl) > 0) {
data_list <- add_expr(
data_list,
substitute(
flag_var_anl_label <- teal.data::col_labels(anl[, flag_var_anl], fill = FALSE),
env = list(flag_var_anl = flag_var_anl)
)
)
}
if (length(flag_var_aesi) > 0) {
data_list <- add_expr(
data_list,
substitute(
flag_var_aesi_label <- teal.data::col_labels(anl[, flag_var_aesi], fill = FALSE),
env = list(flag_var_aesi = flag_var_aesi)
)
)
}
data_list <- add_expr(
data_list,
substitute(
expr = dataname <- df_explicit_na(dataname, na_level = na_str),
env = list(dataname = as.name("anl"), na_str = na_level)
)
)
data_list <- add_expr(
data_list,
substitute(
expr = parentname <- df_explicit_na(parentname, na_level = na_str),
env = list(parentname = as.name(parentname), na_str = na_level)
)
)
y$data <- bracket_expr(data_list)
# Layout to be used with `parentname` dataset
# because not all subjects may exist in `anl_name` dataset.
layout_parent_list <- list()
layout_parent_list <- add_expr(
layout_parent_list,
quote(rtables::basic_table(show_colcounts = TRUE))
)
layout_parent_list <- add_expr(
layout_parent_list,
substitute(
expr = rtables::split_cols_by(var = arm_var),
env = list(arm_var = arm_var[[1]])
)
)
if (length(arm_var) == 2) {
layout_parent_list <- add_expr(
layout_parent_list,
substitute(
expr = rtables::split_cols_by(nested_col, split_fun = drop_split_levels),
env = list(nested_col = arm_var[[2]])
)
)
}
if (add_total) {
layout_parent_list <- add_expr(
layout_parent_list,
substitute(
expr = rtables::add_overall_col(label = total_label),
env = list(total_label = total_label)
)
)
}
if (count_dth) {
layout_parent_list <- add_expr(
layout_parent_list,
substitute(
expr = count_values(
dthfl_var,
values = "Y",
.labels = c(count_fraction = "Total number of deaths"),
.formats = c(count_fraction = format_count_fraction),
denom = "N_col"
),
env = list(dthfl_var = dthfl_var)
)
)
}
if (count_wd) {
layout_parent_list <- add_expr(
layout_parent_list,
substitute(
expr = count_values(
dcsreas_var,
values = "ADVERSE EVENT",
.labels = c(count_fraction = "Total number of patients withdrawn from study due to an AE"),
.formats = c(count_fraction = format_count_fraction),
denom = "N_col"
),
env = list(dcsreas_var = dcsreas_var)
)
)
}
y$layout_parent <- substitute(
expr = lyt_parent <- layout_parent_pipe,
env = list(
layout_parent_pipe = pipe_expr(layout_parent_list)
)
)
table_parent_list <- list()
table_parent_list <- add_expr(
table_parent_list,
substitute(
expr = table_parent <- rtables::build_table(lyt = lyt_parent, df = df_parent, alt_counts_df = df_parent),
env = list(df_parent = as.name(parentname))
)
)
y$table_parent <- pipe_expr(table_parent_list)
layout_anl_list <- list()
layout_anl_list <- add_expr(
layout_anl_list,
quote(rtables::basic_table(show_colcounts = TRUE))
)
layout_anl_list <- add_expr(
layout_anl_list,
substitute(
expr = rtables::split_cols_by(var = arm_var),
env = list(arm_var = arm_var[[1]])
)
)
if (length(arm_var) == 2) {
layout_anl_list <- add_expr(
layout_anl_list,
substitute(
expr = rtables::split_cols_by(nested_col, split_fun = drop_split_levels),
env = list(nested_col = arm_var[[2]])
)
)
}
if (add_total) {
layout_anl_list <- add_expr(
layout_anl_list,
substitute(
expr = rtables::add_overall_col(label = tot_label),
env = list(tot_label = total_label)
)
)
}
layout_anl_list <- add_expr(
layout_anl_list,
quote(
expr = count_patients_with_event(
vars = "USUBJID",
filters = c("tmp_aefl" = "Y"),
denom = "N_col",
.stats = "count_fraction",
.labels = c(
count_fraction = "Total number of patients with at least one adverse event"
),
.indent_mods = c(count_fraction = 0L),
table_names = "total_pts_at_least_one"
) %>% count_values(
"STUDYID",
values = study_id,
.stats = "count",
.labels = c(count = "Total AEs"),
table_names = "total_aes"
)
)
)
table_anl_list <- list()
table_anl_list <- add_expr(
table_anl_list,
substitute(
expr = table_anl <- rtables::build_table(lyt = lyt_anl, df = anl, alt_counts_df = df_parent),
env = list(df_parent = as.name(parentname))
)
)
condition1 <- count_subj && is.character(flag_var_anl)
if (condition1) {
layout_anl_list <- add_expr(
layout_anl_list,
substitute(
expr = count_patients_with_flags(
var = "USUBJID",
flag_variables = flag_var_anl_label,
table_names = "count_subj_anl",
denom = "N_col",
var_labels = "Total number of patients with at least one",
show_labels = "visible"
),
env = list(flag_var_anl = flag_var_anl)
)
)
}
condition2 <- count_pt && is.character(flag_var_anl)
if (condition2) {
layout_anl_list <- add_expr(
layout_anl_list,
substitute(
expr = count_patients_with_flags(
var = llt,
flag_variables = flag_var_anl_label,
table_names = "count_pt_anl",
.stats = "count",
.formats = c(count = "xx"),
denom = "N_col",
var_labels = "Total number of unique preferred terms which are",
show_labels = "visible"
),
env = list(flag_var_anl = flag_var_anl, llt = llt)
)
)
}
condition3 <- count_events && is.character(flag_var_anl)
if (condition3) {
layout_anl_list <- add_expr(
layout_anl_list,
substitute(
expr = count_patients_with_flags(
var = "USUBJID_AESEQ",
flag_variables = flag_var_anl_label,
table_names = "count_events_anl",
.stats = "count",
.formats = c(count = "xx"),
denom = "N_col",
var_labels = "Total number of adverse events which are",
show_labels = "visible"
),
env = list(flag_var_anl = flag_var_anl)
)
)
}
condition4 <- count_subj && is.character(flag_var_aesi)
if (condition4) {
layout_anl_list <- add_expr(
layout_anl_list,
substitute(
expr = count_patients_with_flags(
var = "USUBJID",
flag_variables = flag_var_aesi_label,
table_names = "count_subj_aesi",
denom = "N_col",
var_labels = "Medical concepts: number of patients with",
show_labels = "visible"
),
env = list(flag_var_aesi = flag_var_aesi)
)
)
}
condition5 <- count_pt && is.character(flag_var_aesi)
if (condition5) {
layout_anl_list <- add_expr(
layout_anl_list,
substitute(
expr = count_patients_with_flags(
var = llt,
flag_variables = flag_var_aesi_label,
table_names = "count_pt_aesi",
.stats = "count",
.formats = c(count = "xx"),
denom = "N_col",
var_labels = "Medical concepts: number of unique preferred terms which are part of",
show_labels = "visible"
),
env = list(flag_var_aesi = flag_var_aesi, llt = llt)
)
)
}
condition6 <- count_events && is.character(flag_var_aesi)
if (condition6) {
layout_anl_list <- add_expr(
layout_anl_list,
substitute(
expr = count_patients_with_flags(
var = "USUBJID_AESEQ",
flag_variables = flag_var_aesi_label,
table_names = "count_events_aesi",
.stats = "count",
.formats = c(count = "xx"),
denom = "N_col",
var_labels = "Medical concepts: number of adverse events which are part of",
show_labels = "visible"
),
env = list(flag_var_aesi = flag_var_aesi)
)
)
}
y$layout_anl <- substitute(
expr = lyt_anl <- layout_anl_pipe,
env = list(
layout_anl_pipe = pipe_expr(layout_anl_list)
)
)
y$table_anl <- pipe_expr(table_anl_list)
table_list <- list()
table_list <- add_expr(
table_list,
quote(
rtables::col_info(table_parent) <- rtables::col_info(table_anl)
)
)
all_conditions <- c(
condition1,
condition2,
condition3,
condition4,
condition5,
condition6
)
if (any(all_conditions) && (count_dth || count_wd)) {
table_list <- add_expr(
table_list,
quote(
expr = table <- rtables::rbind(
table_anl[1:2, ],
table_parent,
table_anl[3:nrow(table_anl), ]
)
)
)
} else if (any(all_conditions)) {
table_list <- add_expr(
table_list,
quote(
expr = table <- rtables::rbind(
table_anl[1:2, ],
table_anl[3:nrow(table_anl), ]
)
)
)
} else {
table_list <- add_expr(
table_list,
quote(
table <- rtables::rbind(table_anl, table_parent)
)
)
}
y$table <- bracket_expr(table_list)
y
}
#' teal Module: Adverse Events Summary
#'
#' This module produces an adverse events summary table.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_arguments
#' @inheritParams template_events_summary
#' @param arm_var ([teal.transform::choices_selected()])\cr object with all
#' available choices and preselected option for variable names that can be used as `arm_var`.
#' It defines the grouping variable(s) in the results table.
#' If there are two elements selected for `arm_var`,
#' second variable will be nested under the first variable.
#' @param dthfl_var ([teal.transform::choices_selected()])\cr object
#' with all available choices and preselected option for variable names that can be used as death flag variable.
#' Records with `"Y"`` are summarized in the table row for "Total number of deaths".
#' @param dcsreas_var ([teal.transform::choices_selected()])\cr object
#' with all available choices and preselected option for variable names that can be used as study discontinuation
#' reason variable. Records with `"ADVERSE EVENTS"` are summarized in the table row for
#' "Total number of patients withdrawn from study due to an AE".
#' @param flag_var_anl ([teal.transform::choices_selected()] or `NULL`)\cr
#' vector with names of flag variables from `dataset` used to count adverse event sub-groups (e.g. Serious events,
#' Related events, etc.). Variable labels are used as table row names if they exist.
#' @param flag_var_aesi ([teal.transform::choices_selected()] or `NULL`)\cr
#' vector with names of flag variables from `dataset` used to count adverse event special interest groups. All flag
#' variables must be of type `logical`. Variable labels are used as table row names if they exist.
#' @param aeseq_var ([teal.transform::choices_selected()])\cr variable for
#' adverse events sequence number from `dataset`. Used for counting total number of events.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` as created from `rtables::build_table`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_events_summary(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(dplyr)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl %>%
#' mutate(
#' DTHFL = case_when(
#' !is.na(DTHDT) ~ "Y",
#' TRUE ~ ""
#' ) %>% with_label("Subject Death Flag")
#' )
#' ADAE <- tmc_ex_adae
#'
#' .add_event_flags <- function(dat) {
#' dat <- dat %>%
#' mutate(
#' TMPFL_SER = AESER == "Y",
#' TMPFL_REL = AEREL == "Y",
#' TMPFL_GR5 = AETOXGR == "5",
#' TMP_SMQ01 = !is.na(SMQ01NAM),
#' TMP_SMQ02 = !is.na(SMQ02NAM),
#' TMP_CQ01 = !is.na(CQ01NAM)
#' )
#' column_labels <- list(
#' TMPFL_SER = "Serious AE",
#' TMPFL_REL = "Related AE",
#' TMPFL_GR5 = "Grade 5 AE",
#' TMP_SMQ01 = aesi_label(dat[["SMQ01NAM"]], dat[["SMQ01SC"]]),
#' TMP_SMQ02 = aesi_label("Y.9.9.9.9/Z.9.9.9.9 AESI"),
#' TMP_CQ01 = aesi_label(dat[["CQ01NAM"]])
#' )
#' col_labels(dat)[names(column_labels)] <- as.character(column_labels)
#' dat
#' }
#'
#' #' Generating user-defined event flags.
#' ADAE <- ADAE %>% .add_event_flags()
#'
#' .ae_anl_vars <- names(ADAE)[startsWith(names(ADAE), "TMPFL_")]
#' .aesi_vars <- names(ADAE)[startsWith(names(ADAE), "TMP_")]
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_events_summary(
#' label = "Adverse Events Summary",
#' dataname = "ADAE",
#' arm_var = choices_selected(
#' choices = variable_choices("ADSL", c("ARM", "ARMCD")),
#' selected = "ARM"
#' ),
#' flag_var_anl = choices_selected(
#' choices = variable_choices("ADAE", data[[".ae_anl_vars"]]),
#' selected = data[[".ae_anl_vars"]][1],
#' keep_order = TRUE,
#' fixed = FALSE
#' ),
#' flag_var_aesi = choices_selected(
#' choices = variable_choices("ADAE", data[[".aesi_vars"]]),
#' selected = data[[".aesi_vars"]][1],
#' keep_order = TRUE,
#' fixed = FALSE
#' ),
#' add_total = TRUE
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_t_events_summary <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
flag_var_anl = NULL,
flag_var_aesi = NULL,
dthfl_var = teal.transform::choices_selected(
teal.transform::variable_choices(parentname, "DTHFL"), "DTHFL",
fixed = TRUE
),
dcsreas_var = teal.transform::choices_selected(
teal.transform::variable_choices(parentname, "DCSREAS"), "DCSREAS",
fixed = TRUE
),
llt = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AEDECOD"), "AEDECOD",
fixed = TRUE
),
aeseq_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AESEQ"), "AESEQ",
fixed = TRUE
),
add_total = TRUE,
total_label = default_total_label(),
na_level = default_na_str(),
count_dth = TRUE,
count_wd = TRUE,
count_subj = TRUE,
count_pt = TRUE,
count_events = TRUE,
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_events_summary")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(flag_var_anl, "choices_selected", null.ok = TRUE)
checkmate::assert_class(flag_var_aesi, "choices_selected", null.ok = TRUE)
checkmate::assert_class(dthfl_var, "choices_selected")
checkmate::assert_class(dcsreas_var, "choices_selected")
checkmate::assert_class(llt, "choices_selected")
checkmate::assert_class(aeseq_var, "choices_selected")
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_string(na_level)
checkmate::assert_flag(count_dth)
checkmate::assert_flag(count_wd)
checkmate::assert_flag(count_subj)
checkmate::assert_flag(count_pt)
checkmate::assert_flag(count_events)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
args <- c(as.list(environment()))
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname, multiple = TRUE, ordered = TRUE),
dthfl_var = cs_to_des_select(dthfl_var, dataname = parentname),
dcsreas_var = cs_to_des_select(dcsreas_var, dataname = parentname),
flag_var_anl = `if`(
is.null(flag_var_anl),
NULL,
cs_to_des_select(flag_var_anl, dataname = dataname, multiple = TRUE, ordered = TRUE)
),
flag_var_aesi = `if`(
is.null(flag_var_aesi),
NULL,
cs_to_des_select(flag_var_aesi, dataname = dataname, multiple = TRUE, ordered = TRUE)
),
aeseq_var = cs_to_des_select(aeseq_var, dataname = dataname),
llt = cs_to_des_select(llt, dataname = dataname)
)
module(
label = label,
ui = ui_t_events_summary,
ui_args = c(data_extract_list, args),
server = srv_t_events_summary,
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
label = label,
total_label = total_label,
na_level = na_level,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_t_events_summary <- function(id, ...) {
ns <- NS(id)
a <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$dthfl_var,
a$dcsreas_var,
a$flag_var_anl,
a$flag_var_aesi,
a$aeseq_var,
a$llt
)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(teal.widgets::table_with_settings_ui(ns("table"))),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(
a[c("arm_var", "dthfl_var", "dcsreas_var", "flag_var_anl", "flag_var_aesi", "aeseq_var", "llt")]
),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
`if`(
is.null(a$flag_var_anl),
NULL,
teal.transform::data_extract_ui(
id = ns("flag_var_anl"),
label = "Event Flag Variables",
data_extract_spec = a$flag_var_anl,
is_single_dataset = is_single_dataset_value
)
),
`if`(
is.null(a$flag_var_aesi),
NULL,
teal.transform::data_extract_ui(
id = ns("flag_var_aesi"),
label = "AE Basket Flag Variables",
data_extract_spec = a$flag_var_aesi,
is_single_dataset = is_single_dataset_value
)
),
checkboxInput(
ns("add_total"),
"Add All Patients column",
value = a$add_total
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table")),
teal.widgets::panel_item(
"Table Settings",
checkboxInput(
ns("count_dth"),
"Count deaths",
value = a$count_dth
),
checkboxInput(
ns("count_wd"),
"Count withdrawals due to AE",
value = a$count_wd
),
checkboxInput(
ns("count_subj"),
"Count patients",
value = a$count_subj
),
checkboxInput(
ns("count_pt"),
"Count preferred terms",
value = a$count_pt
),
checkboxInput(
ns("count_events"),
"Count events",
value = a$count_events
)
),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional Variables Info",
teal.transform::data_extract_ui(
id = ns("dthfl_var"),
label = "Death Flag Variable",
data_extract_spec = a$dthfl_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("dcsreas_var"),
label = "Study Discontinuation Reason Variable",
data_extract_spec = a$dcsreas_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("aeseq_var"),
label = "AE Sequence Variable",
data_extract_spec = a$aeseq_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("llt"),
label = "AE Term Variable",
data_extract_spec = a$llt,
is_single_dataset = is_single_dataset_value
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_t_events_summary <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
arm_var,
dthfl_var,
dcsreas_var,
flag_var_anl,
flag_var_aesi,
aeseq_var,
llt,
label,
total_label,
na_level,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
data_extract_vars <- list(
arm_var = arm_var, dthfl_var = dthfl_var, dcsreas_var = dcsreas_var,
aeseq_var = aeseq_var, llt = llt
)
if (!is.null(flag_var_anl)) {
data_extract_vars[["flag_var_anl"]] <- flag_var_anl
}
if (!is.null(flag_var_aesi)) {
data_extract_vars[["flag_var_aesi"]] <- flag_var_aesi
}
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = data_extract_vars,
datasets = data,
select_validation_rule = list(
arm_var = ~ if (length(.) != 1 && length(.) != 2) "Please select exactly 1 or 2 treatment variables",
dthfl_var = shinyvalidate::sv_required("Death Flag Variable is requried"),
dcsreas_var = shinyvalidate::sv_required("Study Discontinuation Reason Variable is required"),
aeseq_var = shinyvalidate::sv_required("AE Sequence Variable is required"),
llt = shinyvalidate::sv_required("AE Term Variable is required")
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = Filter(Negate(is.null), list(arm_var = arm_var, dthfl_var = dthfl_var, dcsreas_var = dcsreas_var)),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- merged$anl_q()[[parentname]]
anl_filtered <- merged$anl_q()[[dataname]]
input_arm_var <- as.vector(merged$anl_input_r()$columns_source$arm_var)
input_dthfl_var <- as.vector(merged$anl_input_r()$columns_source$dthfl_var)
input_dcsreas_var <- as.vector(merged$anl_input_r()$columns_source$dcsreas_var)
input_flag_var_anl <- if (!is.null(flag_var_anl)) {
as.vector(merged$anl_input_r()$columns_source$flag_var_anl)
} else {
NULL
}
input_flag_var_aesi <- if (!is.null(flag_var_anl)) {
as.vector(merged$anl_input_r()$columns_source$flag_var_aesi)
} else {
NULL
}
input_aeseq_var <- as.vector(merged$anl_input_r()$columns_source$aeseq_var)
input_llt <- as.vector(merged$anl_input_r()$columns_source$llt)
validate(
need(
is.factor(adsl_filtered[[input_arm_var[[1]]]]) && is.factor(anl_filtered[[input_arm_var[[1]]]]),
"The treatment variable selected must be a factor variable in all datasets used."
),
if (length(input_arm_var) == 2) {
need(
is.factor(adsl_filtered[[input_arm_var[[2]]]]) && all(!adsl_filtered[[input_arm_var[[2]]]] %in% c(
"", NA
)),
"Please check nested treatment variable which needs to be a factor without NA or empty strings."
)
},
need(
identical(levels(adsl_filtered[[input_arm_var[[1]]]]), levels(anl_filtered[[input_arm_var[[1]]]])),
"The treatment variable selected must have the same levels across all datasets used."
)
)
# validate inputs
validate_standard_inputs(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var, input_dthfl_var, input_dcsreas_var),
anl = anl_filtered,
anlvars = c("USUBJID", "STUDYID", input_flag_var_anl, input_flag_var_aesi, input_aeseq_var, input_llt),
arm_var = input_arm_var[[1]]
)
})
# The R-code corresponding to the analysis.
table_q <- reactive({
validate_checks()
input_flag_var_anl <- if (!is.null(flag_var_anl)) {
as.vector(merged$anl_input_r()$columns_source$flag_var_anl)
} else {
NULL
}
input_flag_var_aesi <- if (!is.null(flag_var_anl)) {
as.vector(merged$anl_input_r()$columns_source$flag_var_aesi)
} else {
NULL
}
my_calls <- template_events_summary(
anl_name = "ANL",
parentname = "ANL_ADSL",
arm_var = as.vector(merged$anl_input_r()$columns_source$arm_var),
dthfl_var = as.vector(merged$anl_input_r()$columns_source$dthfl_var),
dcsreas_var = as.vector(merged$anl_input_r()$columns_source$dcsreas_var),
flag_var_anl = if (length(input_flag_var_anl) != 0) input_flag_var_anl else NULL,
flag_var_aesi = if (length(input_flag_var_aesi) != 0) input_flag_var_aesi else NULL,
aeseq_var = as.vector(merged$anl_input_r()$columns_source$aeseq_var),
llt = as.vector(merged$anl_input_r()$columns_source$llt),
add_total = input$add_total,
total_label = total_label,
na_level = na_level,
count_dth = input$count_dth,
count_wd = input$count_wd,
count_subj = input$count_subj,
count_pt = input$count_pt,
count_events = input$count_events
)
all_basic_table_args <- teal.widgets::resolve_basic_table_args(user_table = basic_table_args)
teal.code::eval_code(
merged$anl_q(),
as.expression(unlist(my_calls))
) %>%
teal.code::eval_code(
substitute(
expr = {
rtables::main_title(table) <- title
rtables::main_footer(table) <- footer
rtables::prov_footer(table) <- p_footer
rtables::subtitles(table) <- subtitle
}, env = list(
title = `if`(is.null(all_basic_table_args$title), label, all_basic_table_args$title),
footer = `if`(is.null(all_basic_table_args$main_footer), "", all_basic_table_args$main_footer),
p_footer = `if`(is.null(all_basic_table_args$prov_footer), "", all_basic_table_args$prov_footer),
subtitle = `if`(is.null(all_basic_table_args$subtitles), "", all_basic_table_args$subtitles)
)
)
)
})
# Outputs to render.
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = table_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Adverse Events Summary Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.