Nothing
#' Template: Summary of Variables
#'
#' Creates a valid expression to generate a table to summarize variables.
#'
#' @inheritParams template_arguments
#' @param show_labels `r lifecycle::badge("deprecated")`
#' @param arm_var_labels (`character` or `NULL`)\cr vector of column variable labels to display, of the same length as
#' `arm_var`. If `NULL`, no labels will be displayed.
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_summary()]
#'
#' @keywords internal
template_summary <- function(dataname,
parentname,
arm_var,
sum_vars,
show_labels = lifecycle::deprecated(),
add_total = TRUE,
total_label = default_total_label(),
var_labels = character(),
arm_var_labels = NULL,
na.rm = FALSE, # nolint: object_name.
na_level = default_na_str(),
numeric_stats = c(
"n", "mean_sd", "mean_ci", "median", "median_ci", "quantiles", "range", "geom_mean"
),
denominator = c("N", "n", "omit"),
drop_arm_levels = TRUE,
basic_table_args = teal.widgets::basic_table_args()) {
if (lifecycle::is_present(show_labels)) {
warning(
"The `show_labels` argument of `template_summary` is deprecated as of teal.modules.clinical 0.9.1.9013 ",
"as it is has no effect on the module.",
call. = FALSE
)
}
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_character(arm_var, min.len = 1, max.len = 2)
checkmate::assert_character(sum_vars)
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_character(var_labels)
checkmate::assert_character(arm_var_labels, len = length(arm_var), null.ok = TRUE)
checkmate::assert_flag(na.rm)
checkmate::assert_string(na_level)
checkmate::assert_flag(drop_arm_levels)
checkmate::assert_character(numeric_stats, min.len = 1)
checkmate::assert_subset(
numeric_stats,
c("n", "mean_sd", "mean_ci", "median", "median_ci", "quantiles", "range", "geom_mean")
)
denominator <- match.arg(denominator)
y <- list()
# Data processing
data_list <- list()
data_list <- add_expr(
data_list,
substitute(
expr = anl <- df %>%
df_explicit_na(omit_columns = setdiff(names(df), c(sum_vars)), na_level = na_str),
env = list(
df = as.name(dataname),
sum_vars = sum_vars,
na_str = na_level
)
)
)
prepare_arm_levels_call <- lapply(arm_var, function(x) {
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = x,
drop_arm_levels = drop_arm_levels
)
})
data_list <- Reduce(add_expr, prepare_arm_levels_call, init = data_list)
data_list <- add_expr(
data_list,
substitute(
expr = parentname <- df_explicit_na(parentname, na_level = na_str),
env = list(
parentname = as.name(parentname),
na_str = na_level
)
)
)
y$data <- bracket_expr(data_list)
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(
show_colcounts = TRUE,
main_footer =
"n represents the number of unique subject IDs such that the variable has non-NA values."
)
)
)
layout_list <- list()
layout_list <- add_expr(
layout_list,
parsed_basic_table_args
)
# Build layout
split_cols_call <- lapply(arm_var, function(x) {
if (drop_arm_levels) {
substitute(
expr = rtables::split_cols_by(x, split_fun = drop_split_levels),
env = list(x = x)
)
} else {
substitute(
expr = rtables::split_cols_by(x),
env = list(x = x)
)
}
})
layout_list <- Reduce(add_expr, split_cols_call, init = layout_list)
if (add_total) {
layout_list <- add_expr(
layout_list,
substitute(
expr = rtables::add_overall_col(total_label),
env = list(total_label = total_label)
)
)
}
env_sum_vars <- list(
sum_vars = sum_vars,
sum_var_labels = var_labels[sum_vars],
na.rm = na.rm,
na_level = na_level,
denom = ifelse(denominator == "n", "n", "N_col"),
stats = c(
numeric_stats,
ifelse(denominator == "omit", "count", "count_fraction")
)
)
layout_list <- add_expr(
layout_list,
if (length(var_labels) > 0) {
substitute(
expr = analyze_vars(
vars = sum_vars,
var_labels = sum_var_labels,
show_labels = "visible",
na.rm = na.rm,
na_str = na_level,
denom = denom,
.stats = stats
),
env = env_sum_vars
)
} else {
substitute(
expr = analyze_vars(
vars = sum_vars,
show_labels = "visible",
na.rm = na.rm,
na_str = na_level,
denom = denom,
.stats = stats
),
env = env_sum_vars
)
}
)
if (!is.null(arm_var_labels)) {
layout_list <- add_expr(
layout_list,
substitute(
expr = append_topleft(arm_var_labels),
env = list(arm_var_labels = c(arm_var_labels, ""))
)
)
}
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
y$table <- substitute(
expr = {
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = parent)
},
env = list(parent = as.name(parentname))
)
y
}
#' teal Module: Summary of Variables
#'
#' This module produces a table to summarize variables.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_summary
#' @param arm_var ([teal.transform::choices_selected()])\cr object with all
#' available choices and preselected option for variable names that can be used as `arm_var`.
#' It defines the grouping variable(s) in the results table.
#' If there are two elements selected for `arm_var`,
#' second variable will be nested under the first variable.
#' @param show_arm_var_labels (`flag`)\cr whether arm variable label(s) should be displayed. Defaults to `TRUE`.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_summary(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' # Preparation of the test case - use `EOSDY` and `DCSREAS` variables to demonstrate missing data.
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADSL$EOSDY[1] <- NA_integer_
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_summary(
#' label = "Demographic Table",
#' dataname = "ADSL",
#' arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"),
#' add_total = TRUE,
#' summarize_vars = choices_selected(
#' c("SEX", "RACE", "BMRKR2", "EOSDY", "DCSREAS", "AGE"),
#' c("SEX", "RACE")
#' ),
#' useNA = "ifany"
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_t_summary <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
summarize_vars,
add_total = TRUE,
total_label = default_total_label(),
show_arm_var_labels = TRUE,
useNA = c("ifany", "no"), # nolint: object_name.
na_level = default_na_str(),
numeric_stats = c(
"n", "mean_sd", "mean_ci", "median", "median_ci", "quantiles", "range", "geom_mean"
),
denominator = c("N", "n", "omit"),
drop_arm_levels = TRUE,
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_summary")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(summarize_vars, "choices_selected")
checkmate::assert_string(na_level)
checkmate::assert_character(numeric_stats, min.len = 1)
checkmate::assert_flag(drop_arm_levels)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
checkmate::assert_flag(add_total)
checkmate::assert_flag(show_arm_var_labels)
checkmate::assert_string(total_label)
assert_decorators(decorators, "table")
useNA <- match.arg(useNA) # nolint: object_name.
denominator <- match.arg(denominator)
numeric_stats <- match.arg(numeric_stats, several.ok = TRUE)
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname, multiple = TRUE, ordered = TRUE),
summarize_vars = cs_to_des_select(summarize_vars, dataname = dataname, multiple = TRUE, ordered = TRUE)
)
module(
label = label,
server = srv_summary,
ui = ui_summary,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
label = label,
show_arm_var_labels = show_arm_var_labels,
total_label = total_label,
na_level = na_level,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = c(dataname, parentname)
)
}
#' @keywords internal
ui_summary <- function(id, ...) {
ns <- NS(id)
a <- list(...)
is_single_dataset_value <- teal.transform::is_single_dataset(a$arm_var, a$summarize_vars)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(teal.widgets::table_with_settings_ui(ns("table"))),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(a[c("arm_var", "summarize_vars")]),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Column Variable(s)",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
checkboxInput(ns("add_total"), "Add All Patients column", value = a$add_total),
teal.transform::data_extract_ui(
id = ns("summarize_vars"),
label = "Summarize Variables",
data_extract_spec = a$summarize_vars,
is_single_dataset = is_single_dataset_value
),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional table settings",
radioButtons(
ns("useNA"),
label = "Display NA counts",
choices = c("ifany", "no"),
selected = a$useNA
),
checkboxGroupInput(
ns("numeric_stats"),
label = "Choose the statistics to display for numeric variables",
choices = c(
"n" = "n",
"Mean (SD)" = "mean_sd",
"Mean 95% CI" = "mean_ci",
"Geometric Mean" = "geom_mean",
"Median" = "median",
"Median 95% CI" = "median_ci",
"25% and 75%-ile" = "quantiles",
"Min - Max" = "range"
),
selected = a$numeric_stats
),
radioButtons(
ns("denominator"),
label = "Denominator choice",
choices = c("N", "n", "omit"),
selected = a$denominator
),
if (a$dataname == a$parentname) {
shinyjs::hidden(
checkboxInput(
ns("drop_arm_levels"),
label = "it's a BUG if you see this",
value = TRUE
)
)
} else {
checkboxInput(
ns("drop_arm_levels"),
label = sprintf("Drop columns not in filtered %s", a$dataname),
value = a$drop_arm_levels
)
}
)
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table"))
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_summary <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
arm_var,
summarize_vars,
add_total,
show_arm_var_labels,
total_label,
na_level,
drop_arm_levels,
label,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(arm_var = arm_var, summarize_vars = summarize_vars),
datasets = data,
select_validation_rule = list(
summarize_vars = shinyvalidate::sv_required("Please select a summarize variable"),
arm_var = ~ if (length(.) != 1 && length(.) != 2) {
"Please select 1 or 2 column variables"
}
)
)
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule("numeric_stats", shinyvalidate::sv_required("Please select at least one statistic to display."))
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
id = "anl_merge",
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
id = "adsl_merge",
datasets = data,
data_extract = list(arm_var = arm_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
observeEvent(merged$anl_input_r()$columns_source$summarize_vars, {
choices_classes <- sapply(
names(merged$anl_input_r()$columns_source$summarize_vars),
function(x) {
summarize_var_data <- data()[[summarize_vars$dataname]][[x]]
inherits(summarize_var_data, "numeric") |
inherits(summarize_var_data, "integer")
}
)
if (any(choices_classes)) {
shinyjs::show("numeric_stats")
} else {
shinyjs::hide("numeric_stats")
}
})
# Validate inputs.
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- merged$anl_q()[[parentname]]
anl_filtered <- merged$anl_q()[[dataname]]
anl <- merged$anl_q()[["ANL"]]
# we take names of the columns source as they match names of the input data in merge_datasets
# if we use $arm_var they might be renamed to <selector id>.arm_var
input_arm_var <- names(merged$anl_input_r()$columns_source$arm_var)
input_summarize_vars <- names(merged$anl_input_r()$columns_source$summarize_vars)
validate(
need(
length(unique(anl$USUBJID)) == nrow(anl),
paste0(
"Please choose an analysis dataset where each row represents a different subject, ",
"i.e. USUBJID is different in each row"
)
),
need(
!any(vapply(anl_filtered[, input_summarize_vars], inherits, c("Date", "POSIXt"),
FUN.VALUE = logical(1)
)),
"Date and POSIXt variables are not supported, please select other variables"
),
if (length(input_arm_var) == 2) {
need(
is.factor(adsl_filtered[[input_arm_var[[2]]]]) & all(!adsl_filtered[[input_arm_var[[2]]]] %in% c("", NA)),
"Please check nested treatment variable which needs to be a factor without NA or empty strings."
)
}
)
validate_standard_inputs(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var),
anl = anl_filtered,
anlvars = c("USUBJID", "STUDYID", input_summarize_vars),
arm_var = input_arm_var[[1]]
)
})
# Generate r code for the analysis.
all_q <- reactive({
validate_checks()
summarize_vars <- merged$anl_input_r()$columns_source$summarize_vars
var_labels <- teal.data::col_labels(data()[[dataname]][, summarize_vars, drop = FALSE])
arm_var_labels <- NULL
if (show_arm_var_labels) {
arm_vars <- merged$anl_input_r()$columns_source$arm_var
arm_var_labels <- teal.data::col_labels(data()[[dataname]][, arm_vars, drop = FALSE], fill = TRUE)
}
my_calls <- template_summary(
dataname = "ANL",
parentname = "ANL_ADSL",
arm_var = merged$anl_input_r()$columns_source$arm_var,
sum_vars = summarize_vars,
add_total = input$add_total,
total_label = total_label,
var_labels = var_labels,
arm_var_labels = arm_var_labels,
na.rm = ifelse(input$useNA == "ifany", FALSE, TRUE),
na_level = na_level,
numeric_stats = input$numeric_stats,
denominator = input$denominator,
drop_arm_levels = input$drop_arm_levels,
basic_table_args = basic_table_args
)
teal.code::eval_code(merged$anl_q(), as.expression(unlist(my_calls)))
})
# Decoration of table output.
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
# Outputs to render.
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(id = "table", table_r = table_r)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Summary Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.