Nothing
#' Control Function for Time-To-Event teal Module
#'
#' Controls the arguments for Cox regression and survival analysis results.
#'
#' @param coxph (`list`)\cr control parameters for Cox-PH model. See [tern::control_coxph()] for details.
#' @param surv_time (`list`)\cr control parameters for `survfit` model. See [tern::control_surv_time()] for details.
#' @param surv_timepoint (`list`)\cr control parameters for `survfit` model at time point. See
#' [tern::control_surv_timepoint()] for details.
#'
#' @seealso [template_tte()], [tm_t_tte()]
#'
#' @keywords internal
control_tte <- function(
surv_time = list(
conf_level = 0.95,
conf_type = "plain",
quantiles = c(0.25, 0.75)
),
coxph = list(
pval_method = "log-rank",
ties = "efron",
conf_level = 0.95
),
surv_timepoint = control_surv_timepoint(
conf_level = 0.95,
conf_type = c("plain", "none", "log", "log-log")
)) {
list(
surv_time = do.call("control_surv_time", surv_time),
coxph = do.call("control_coxph", coxph),
surv_timepoint = do.call("control_surv_timepoint", surv_timepoint)
)
}
#' Template: Time-To-Event
#'
#' Creates a valid expression to generate a time-to-event analysis.
#'
#' @inheritParams template_arguments
#' @param control (`list`)\cr list of settings for the analysis. See [control_tte()] for details.
#' @param event_desc_var (`character`)\cr name of the variable with events description.
#' @param paramcd (`character`)\cr endpoint parameter value to use in the table title.
#'
#' @inherit template_arguments return
#'
#' @seealso [control_tte()], [tm_t_tte()]
#'
#' @keywords internal
template_tte <- function(dataname = "ANL",
parentname = "ADSL",
arm_var = "ARM",
paramcd,
ref_arm = NULL,
comp_arm = NULL,
compare_arm = FALSE,
combine_comp_arms = FALSE,
aval_var = "AVAL",
cnsr_var = "CNSR",
strata_var = NULL,
time_points = NULL,
time_unit_var = "AVALU",
event_desc_var = "EVNTDESC",
control = control_tte(),
add_total = FALSE,
total_label = default_total_label(),
na_level = default_na_str(),
basic_table_args = teal.widgets::basic_table_args()) {
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_string(arm_var)
checkmate::assert_string(aval_var)
checkmate::assert_string(cnsr_var)
checkmate::assert_string(time_unit_var)
checkmate::assert_string(event_desc_var)
checkmate::assert_flag(compare_arm)
checkmate::assert_flag(combine_comp_arms)
checkmate::assert_string(total_label)
checkmate::assert_string(na_level)
ref_arm_val <- paste(ref_arm, collapse = "/")
y <- list()
data_list <- list()
data_list <- add_expr(
data_list,
prepare_arm(
dataname = dataname,
arm_var = arm_var,
ref_arm = ref_arm,
comp_arm = comp_arm,
compare_arm = compare_arm,
ref_arm_val = ref_arm_val
)
)
data_list <- add_expr(
data_list,
substitute(
expr = dplyr::mutate(
is_event = cnsr_var == 0,
is_not_event = cnsr_var == 1,
EVNT1 = factor(
dplyr::case_when(
is_event == TRUE ~ "Patients with event (%)",
is_event == FALSE ~ "Patients without event (%)"
),
levels = c("Patients with event (%)", "Patients without event (%)")
),
EVNTDESC = factor(event_desc_var)
),
env = list(
cnsr_var = as.name(cnsr_var),
event_desc_var = as.name(event_desc_var)
)
)
)
data_list <- add_expr(
data_list,
substitute(
expr = df_explicit_na(na_level = na_str),
env = list(na_str = na_level)
)
)
y$data <- substitute(
expr = {
anl <- data_pipe
parentname <- arm_preparation %>% df_explicit_na(na_level = na_str)
},
env = list(
data_pipe = pipe_expr(data_list),
parentname = as.name(parentname),
arm_preparation = prepare_arm(
dataname = parentname,
arm_var = arm_var,
ref_arm = ref_arm,
comp_arm = comp_arm,
compare_arm = compare_arm,
ref_arm_val = ref_arm_val
),
na_str = na_level
)
)
if (compare_arm && combine_comp_arms) {
y$combine_comp_arms <- substitute(
expr = groups <- combine_groups(fct = df[[group]], ref = ref_arm_val),
env = list(
df = as.name(parentname),
group = arm_var,
ref_arm_val = ref_arm_val
)
)
}
layout_list <- list()
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(
show_colcounts = TRUE,
title = paste("Time-To-Event Table for", paramcd),
main_footer = if (compare_arm) {
c(
paste("p-value method for Coxph (Hazard Ratio):", control$coxph$pval_method),
paste("Ties for Coxph (Hazard Ratio):", control$coxph$ties),
paste("Confidence Level Type for Survfit:", control$surv_time$conf_type)
)
} else {
paste("Confidence Level Type for Survfit:", control$surv_time$conf_type)
}
)
)
)
layout_list <- add_expr(
layout_list,
parsed_basic_table_args
)
if (!compare_arm && !combine_comp_arms && add_total) {
layout_list <- add_expr(
layout_list,
substitute(
rtables::split_cols_by(
var = arm_var,
split_fun = add_overall_level(total_label, first = FALSE)
),
env = list(
arm_var = arm_var,
total_label = total_label
)
)
)
} else {
layout_list <- add_expr(
layout_list,
split_col_expr(
compare = compare_arm,
combine = combine_comp_arms,
arm_var = arm_var,
ref = ref_arm_val
)
)
}
layout_list <- add_expr(
layout_list,
substitute(
expr = analyze_vars(
"is_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients with event (%)"),
na_str = na_str
) %>%
rtables::split_rows_by(
"EVNT1",
split_label = "Earliest contributing event",
split_fun = keep_split_levels("Patients with event (%)"),
label_pos = "visible",
child_labels = "hidden",
indent_mod = 1L,
) %>%
rtables::split_rows_by(event_desc_var, split_fun = drop_split_levels) %>%
rtables::summarize_row_groups(format = "xx", na_str = na_str) %>%
analyze_vars(
"is_not_event",
.stats = "count_fraction",
.labels = c(count_fraction = "Patients without event (%)"),
nested = FALSE,
show_labels = "hidden",
na_str = na_str
),
env = list(
event_desc_var = event_desc_var,
na_str = na_level
)
)
)
layout_list <- add_expr(
layout_list,
substitute(
expr = surv_time(
vars = aval_var,
var_labels = paste0("Time to Event (", as.character(anl$time_unit_var[1]), ")"),
is_event = "is_event",
control = list(
conf_level = conf_level,
conf_type = conf_type,
quantiles = quantiles
),
na_str = na_str,
table_names = "time_to_event"
),
env = c(
aval_var = aval_var,
control$surv_time,
time_unit_var = as.name(time_unit_var),
na_str = na_level
)
)
)
if (compare_arm) {
layout_list <- add_expr(
layout_list,
substitute(
expr = coxph_pairwise(
vars = aval_var,
is_event = "is_event",
var_labels = c("Unstratified Analysis"),
control = list(
pval_method = pval_method,
ties = ties,
conf_level = conf_level
),
na_str = na_str,
table_names = "unstratified"
),
env = c(
aval_var = aval_var,
control$coxph,
na_str = na_level
)
)
)
}
if (compare_arm && !is.null(strata_var)) {
layout_list <- add_expr(
layout_list,
substitute(
expr = coxph_pairwise(
vars = aval_var,
is_event = "is_event",
var_labels = paste0("Stratified By: ", paste(strata_var, collapse = ", ")),
strata = strata_var,
control = control_coxph(
pval_method = pval_method,
ties = ties,
conf_level = conf_level
),
na_str = na_str,
table_names = "stratified"
),
env = list(
aval_var = aval_var,
strata_var = strata_var,
pval_method = control$coxph$pval_method,
ties = control$coxph$ties,
conf_level = control$coxph$conf_level,
na_str = na_level
)
)
)
}
if (!is.null(time_points)) {
method <- ifelse(compare_arm, "both", "surv")
indents <- if (compare_arm) {
c(
"pt_at_risk" = 0L, "event_free_rate" = 0L, "rate_ci" = 0L,
"rate_diff" = 1L, "rate_diff_ci" = 1L, "ztest_pval" = 1L
)
} else {
NULL
}
layout_list <- add_expr(
layout_list,
substitute(
expr = surv_timepoint(
vars = aval_var,
var_labels = as.character(anl$time_unit_var[1]),
is_event = "is_event",
time_point = time_points,
method = method,
control = control_surv_timepoint(
conf_level = conf_level,
conf_type = conf_type
),
.indent_mods = indents,
na_str = na_str
),
env = list(
aval_var = aval_var,
time_points = time_points,
method = method,
indents = indents,
time_unit_var = as.name(time_unit_var),
conf_level = control$surv_timepoint$conf_level,
conf_type = control$surv_timepoint$conf_type,
na_str = na_level
)
)
)
}
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
y$table <- substitute(
expr = {
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = parentname)
},
env = list(parentname = as.name(parentname))
)
y
}
#' teal Module: Time-To-Event Table
#'
#' This module produces a time-to-event analysis summary table, consistent with the TLG Catalog
#' template for `TTET01` available [here](
#' https://insightsengineering.github.io/tlg-catalog/stable/tables/efficacy/ttet01.html).
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_tte
#' @param conf_level_coxph ([teal.transform::choices_selected()])\cr object with all available choices and
#' pre-selected option for confidence level, each within range of (0, 1).
#' @param conf_level_survfit ([teal.transform::choices_selected()])\cr object with all available choices and
#' pre-selected option for confidence level, each within range of (0, 1).
#' @param event_desc_var (`character` or [teal.transform::data_extract_spec()])\cr variable name with the
#' event description information, optional.
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_tte(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @details
#' * The core functionality of this module is based on [tern::coxph_pairwise()], [tern::surv_timepoint()],
#' and [tern::surv_time()] from the `tern` package.
#' * The arm and stratification variables are taken from the `parentname` data.
#' * The following variables are used in the module:
#'
#' * `AVAL`: time to event
#' * `CNSR`: 1 if record in `AVAL` is censored, 0 otherwise
#' * `PARAMCD`: variable used to filter for endpoint (e.g. OS). After
#' filtering for `PARAMCD` one observation per patient is expected
#'
#' @inherit module_arguments return seealso
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADTTE <- tmc_ex_adtte
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADTTE <- data[["ADTTE"]]
#'
#' arm_ref_comp <- list(
#' ACTARMCD = list(
#' ref = "ARM B",
#' comp = c("ARM A", "ARM C")
#' ),
#' ARM = list(
#' ref = "B: Placebo",
#' comp = c("A: Drug X", "C: Combination")
#' )
#' )
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_tte(
#' label = "Time To Event Table",
#' dataname = "ADTTE",
#' arm_var = choices_selected(
#' variable_choices(ADSL, c("ARM", "ARMCD", "ACTARMCD")),
#' "ARM"
#' ),
#' arm_ref_comp = arm_ref_comp,
#' paramcd = choices_selected(
#' value_choices(ADTTE, "PARAMCD", "PARAM"),
#' "OS"
#' ),
#' strata_var = choices_selected(
#' variable_choices(ADSL, c("SEX", "BMRKR2")),
#' "SEX"
#' ),
#' time_points = choices_selected(c(182, 243), 182),
#' event_desc_var = choices_selected(
#' variable_choices(ADTTE, "EVNTDESC"),
#' "EVNTDESC",
#' fixed = TRUE
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_t_tte <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
arm_ref_comp = NULL,
paramcd,
strata_var,
aval_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVAL"), "AVAL",
fixed = TRUE
),
cnsr_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "CNSR"), "CNSR",
fixed = TRUE
),
conf_level_coxph = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order = TRUE),
conf_level_survfit = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order = TRUE),
time_points,
time_unit_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, "AVALU"), "AVALU",
fixed = TRUE
),
event_desc_var = teal.transform::choices_selected("EVNTDESC", "EVNTDESC", fixed = TRUE),
add_total = FALSE,
total_label = default_total_label(),
na_level = default_na_str(),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_tte")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(paramcd, "choices_selected")
checkmate::assert_class(strata_var, "choices_selected")
checkmate::assert_class(aval_var, "choices_selected")
checkmate::assert_class(cnsr_var, "choices_selected")
checkmate::assert_class(conf_level_coxph, "choices_selected")
checkmate::assert_class(conf_level_survfit, "choices_selected")
checkmate::assert_class(time_points, "choices_selected")
checkmate::assert_class(time_unit_var, "choices_selected")
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_string(na_level)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
args <- as.list(environment())
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
paramcd = cs_to_des_filter(paramcd, dataname = dataname),
aval_var = cs_to_des_select(aval_var, dataname = dataname),
cnsr_var = cs_to_des_select(cnsr_var, dataname = dataname),
strata_var = cs_to_des_select(strata_var, dataname = parentname, multiple = TRUE),
event_desc_var = cs_to_des_select(event_desc_var, dataname = dataname),
time_unit_var = cs_to_des_select(time_unit_var, dataname = dataname)
)
module(
label = label,
server = srv_t_tte,
ui = ui_t_tte,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
arm_ref_comp = arm_ref_comp,
label = label,
total_label = total_label,
na_level = na_level,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_t_tte <- function(id, ...) {
a <- list(...) # module args
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$paramcd,
a$aval_var,
a$cnsr_var,
a$strata_var,
a$event_desc_var,
a$time_unit_var
)
ns <- NS(id)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(teal.widgets::table_with_settings_ui(ns("table"))),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(
a[c("arm_var", "paramcd", "aval_var", "cnsr_var", "strata_var", "event_desc_var")]
),
teal.transform::data_extract_ui(
id = ns("paramcd"),
label = "Select Endpoint",
data_extract_spec = a$paramcd,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("aval_var"),
label = "Analysis Variable",
data_extract_spec = a$aval_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("cnsr_var"),
label = "Censor Variable",
data_extract_spec = a$cnsr_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
tags$div(
class = "arm-comp-box",
tags$label("Compare Treatments"),
shinyWidgets::switchInput(
inputId = ns("compare_arms"),
value = !is.null(a$arm_ref_comp),
size = "mini"
),
conditionalPanel(
condition = paste0("input['", ns("compare_arms"), "']"),
tags$div(
uiOutput(ns("arms_buckets")),
uiOutput(ns("helptext_ui")),
checkboxInput(
ns("combine_comp_arms"),
"Combine all comparison groups?",
value = FALSE
),
teal.transform::data_extract_ui(
id = ns("strata_var"),
label = "Stratify by",
data_extract_spec = a$strata_var,
is_single_dataset = is_single_dataset_value
)
)
)
),
conditionalPanel(
condition = paste0("!input['", ns("compare_arms"), "']"),
checkboxInput(ns("add_total"), "Add All Patients column", value = a$add_total)
),
teal.widgets::optionalSelectInput(ns("time_points"),
"Time Points",
a$time_points$choices,
a$time_points$selected,
multiple = TRUE,
fixed = a$time_points$fixed
),
teal.transform::data_extract_ui(
id = ns("event_desc_var"),
label = "Event Description Variable",
data_extract_spec = a$event_desc_var,
is_single_dataset = is_single_dataset_value
),
conditionalPanel(
condition = paste0("input['", ns("compare_arms"), "']"),
teal.widgets::panel_item(
"Comparison settings",
radioButtons(
ns("pval_method_coxph"),
label = HTML(
paste(
"p-value method for ",
tags$span(class = "text-primary", "Coxph"),
" (Hazard Ratio)",
sep = ""
)
),
choices = c("wald", "log-rank", "likelihood"),
selected = "log-rank"
),
radioButtons(
ns("ties_coxph"),
label = HTML(
paste(
"Ties for ",
tags$span(class = "text-primary", "Coxph"),
" (Hazard Ratio)",
sep = ""
)
),
choices = c("exact", "breslow", "efron"),
selected = "exact"
),
teal.widgets::optionalSelectInput(
inputId = ns("conf_level_coxph"),
label = HTML(
paste(
"Confidence Level for ",
tags$span(class = "text-primary", "Coxph"),
" (Hazard Ratio)",
sep = ""
)
),
a$conf_level_coxph$choices,
a$conf_level_coxph$selected,
multiple = FALSE,
fixed = a$conf_level_coxph$fixed
)
)
),
teal.widgets::panel_item(
"Additional table settings",
teal.widgets::optionalSelectInput(
inputId = ns("conf_level_survfit"),
label = HTML(
paste(
"Confidence Level for ",
tags$span(class = "text-primary", "Survfit"),
" (KM Median Estimate & Event Free Rate)",
sep = ""
)
),
a$conf_level_survfit$choices,
a$conf_level_survfit$selected,
multiple = FALSE,
fixed = a$conf_level_survfit$fixed
),
radioButtons(
ns("conf_type_survfit"),
"Confidence Level Type for Survfit",
choices = c("plain", "log", "log-log"),
selected = "plain"
),
sliderInput(
inputId = ns("probs_survfit"),
label = "KM Estimate Percentiles",
min = 0.01,
max = 0.99,
value = c(0.25, 0.75),
width = "100%"
),
teal.transform::data_extract_ui(
id = ns("time_unit_var"),
label = "Time Unit Variable",
data_extract_spec = a$time_unit_var,
is_single_dataset = is_single_dataset_value
)
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table")),
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_t_tte <- function(id,
data,
filter_panel_api,
reporter,
arm_var,
paramcd,
aval_var,
cnsr_var,
strata_var,
event_desc_var,
dataname,
parentname,
arm_ref_comp,
time_unit_var,
add_total,
total_label,
label,
na_level,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(shiny::isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
# Setup arm variable selection, default reference arms, and default
# comparison arms for encoding panel
iv_arm_ref <- arm_ref_comp_observer(
session,
input,
output,
id_arm_var = extract_input("arm_var", parentname),
data = reactive(data()[[parentname]]),
arm_ref_comp = arm_ref_comp,
module = "tm_t_tte",
on_off = reactive(input$compare_arms)
)
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(
arm_var = arm_var,
paramcd = paramcd,
aval_var = aval_var,
cnsr_var = cnsr_var,
strata_var = strata_var,
event_desc_var = event_desc_var,
time_unit_var = time_unit_var
),
datasets = data,
select_validation_rule = list(
aval_var = shinyvalidate::sv_required("An analysis variable is required"),
cnsr_var = shinyvalidate::sv_required("A censor variable is required"),
arm_var = shinyvalidate::sv_required("A treatment variable is required"),
event_desc_var = shinyvalidate::sv_required("An event description variable is required"),
time_unit_var = shinyvalidate::sv_required("A Time unit variable is required")
),
filter_validation_rule = list(
paramcd = shinyvalidate::sv_required("An endpoint is required")
)
)
output$helptext_ui <- renderUI({
req(selector_list()$arm_var()$select)
helpText("Multiple reference groups are automatically combined into a single group.")
})
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
if (isTRUE(input$compare_arms)) {
iv$add_validator(iv_arm_ref)
}
iv$add_rule("conf_level_coxph", shinyvalidate::sv_required("Please choose a hazard ratio confidence level"))
iv$add_rule(
"conf_level_coxph", shinyvalidate::sv_between(
0, 1,
message_fmt = "Hazard ratio confidence level must between 0 and 1"
)
)
iv$add_rule("conf_level_survfit", shinyvalidate::sv_required("Please choose a KM confidence level"))
iv$add_rule(
"conf_level_survfit", shinyvalidate::sv_between(
0, 1,
message_fmt = "KM confidence level must between 0 and 1"
)
)
iv$add_rule(
"probs_survfit",
~ if (!is.null(.) && .[1] == .[2]) "KM Estimate Percentiles cannot have a range of size 0"
)
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_merge_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_merge_inputs <- teal.transform::merge_expression_module(
datasets = data,
join_keys = teal.data::join_keys(data),
data_extract = list(arm_var = arm_var, strata_var = strata_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_merge_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_merge_inputs()$expr))
})
# Prepare the analysis environment (filter data, check data, populate envir).
validate_checks <- reactive({
teal::validate_inputs(iv_r())
adsl_filtered <- anl_q()[[parentname]]
anl_filtered <- anl_q()[[dataname]]
anl <- anl_q()[["ANL"]]
anl_m <- anl_merge_inputs()
input_arm_var <- as.vector(anl_m$columns_source$arm_var)
input_strata_var <- as.vector(anl_m$columns_source$strata_var)
input_aval_var <- as.vector(anl_m$columns_source$aval_var)
input_cnsr_var <- as.vector(anl_m$columns_source$cnsr_var)
input_event_desc <- as.vector(anl_m$columns_source$event_desc_var)
input_time_unit_var <- as.vector(anl_m$columns_source$time_unit_var)
input_paramcd <- unlist(paramcd$filter)["vars_selected"]
# validate inputs
validate_args <- list(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var, input_strata_var),
anl = anl_filtered,
anlvars = c(
"USUBJID", "STUDYID", input_paramcd, input_aval_var,
input_cnsr_var, input_event_desc, input_time_unit_var
),
arm_var = input_arm_var
)
# validate arm levels
if (length(input_arm_var) > 0 && length(unique(adsl_filtered[[input_arm_var]])) == 1) {
validate_args <- append(validate_args, list(min_n_levels_armvar = NULL))
}
if (isTRUE(input$compare_arms)) {
validate_args <- append(
validate_args,
list(ref_arm = unlist(input$buckets$Ref), comp_arm = unlist(input$buckets$Comp))
)
}
do.call(what = "validate_standard_inputs", validate_args)
# check that there is at least one record with no missing data
validate(shiny::need(
!all(is.na(anl[[input_aval_var]])),
"ANCOVA table cannot be calculated as all values are missing."
))
NULL
})
# The R-code corresponding to the analysis.
all_q <- reactive({
validate_checks()
anl_m <- anl_merge_inputs()
strata_var <- as.vector(anl_m$columns_source$strata_var)
my_calls <- template_tte(
dataname = "ANL",
parentname = "ANL_ADSL",
arm_var = as.vector(anl_m$columns_source$arm_var),
paramcd = unlist(anl_m$filter_info$paramcd)["selected"],
ref_arm = unlist(input$buckets$Ref),
comp_arm = unlist(input$buckets$Comp),
compare_arm = input$compare_arms,
combine_comp_arms = input$combine_comp_arms && input$compare_arms,
aval_var = as.vector(anl_m$columns_source$aval_var),
cnsr_var = as.vector(anl_m$columns_source$cnsr_var),
strata_var = if (length(strata_var) != 0) strata_var else NULL,
time_points = as.numeric(input$time_points),
time_unit_var = as.vector(anl_m$columns_source$time_unit_var),
event_desc_var = as.vector(anl_m$columns_source$event_desc_var),
control = control_tte(
coxph = control_coxph(
pval_method = input$pval_method_coxph,
ties = input$ties_coxph,
conf_level = as.numeric(input$conf_level_coxph)
),
surv_time = control_surv_time(
conf_level = as.numeric(input$conf_level_survfit),
conf_type = input$conf_type_survfit,
quantiles = input$probs_survfit
),
surv_timepoint = control_surv_timepoint(
conf_level = as.numeric(input$conf_level_survfit),
conf_type = input$conf_type_survfit
)
),
add_total = input$add_total,
total_label = total_label,
na_level = na_level,
basic_table_args = basic_table_args
)
anl_q() %>% teal.code::eval_code(as.expression(unlist(my_calls)))
})
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(id = "table", table_r = table_r)
# Render R code
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Time To Event Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.