Nothing
#' Count patients with abnormal analysis range values by baseline status
#'
#' @description `r lifecycle::badge("stable")`
#'
#' The analyze function [count_abnormal_by_baseline()] creates a layout element to count patients with abnormal
#' analysis range values, categorized by baseline status.
#'
#' This function analyzes primary analysis variable `var` which indicates abnormal range results. Additional
#' analysis variables that can be supplied as a list via the `variables` parameter are `id` (defaults to
#' `USUBJID`), a variable to indicate unique subject identifiers, and `baseline` (defaults to `BNRIND`), a
#' variable to indicate baseline reference ranges.
#'
#' For each direction specified via the `abnormal` parameter (e.g. High or Low), we condition on baseline
#' range result and count patients in the numerator and denominator as follows for each of the following
#' categories:
#' * `Not <abnormality>`
#' * `num`: The number of patients without abnormality at baseline (excluding those with missing baseline)
#' and with at least one abnormality post-baseline.
#' * `denom`: The number of patients without abnormality at baseline (excluding those with missing baseline).
#' * `<Abnormality>`
#' * `num`: The number of patients with abnormality as baseline and at least one abnormality post-baseline.
#' * `denom`: The number of patients with abnormality at baseline.
#' * `Total`
#' * `num`: The number of patients with at least one post-baseline record and at least one abnormality
#' post-baseline.
#' * `denom`: The number of patients with at least one post-baseline record.
#'
#' This function assumes that `df` has been filtered to only include post-baseline records.
#'
#' @inheritParams argument_convention
#' @param abnormal (`character`)\cr values identifying the abnormal range level(s) in `.var`.
#' @param .stats (`character`)\cr statistics to select for the table. Run `get_stats("abnormal_by_baseline")`
#' to see available statistics for this function.
#'
#' @note
#' * `df` should be filtered to include only post-baseline records.
#' * If the baseline variable or analysis variable contains `NA` records, it is expected that `df` has been
#' pre-processed using [df_explicit_na()] or [explicit_na()].
#'
#' @seealso Relevant description function [d_count_abnormal_by_baseline()].
#'
#' @name abnormal_by_baseline
#' @order 1
NULL
#' Description function for `s_count_abnormal_by_baseline()`
#'
#' @description `r lifecycle::badge("stable")`
#'
#' Description function that produces the labels for [s_count_abnormal_by_baseline()].
#'
#' @inheritParams abnormal_by_baseline
#'
#' @return Abnormal category labels for [s_count_abnormal_by_baseline()].
#'
#' @examples
#' d_count_abnormal_by_baseline("LOW")
#'
#' @export
d_count_abnormal_by_baseline <- function(abnormal) {
not_abn_name <- paste("Not", tolower(abnormal))
abn_name <- paste0(toupper(substr(abnormal, 1, 1)), tolower(substring(abnormal, 2)))
total_name <- "Total"
list(
not_abnormal = not_abn_name,
abnormal = abn_name,
total = total_name
)
}
#' @describeIn abnormal_by_baseline Statistics function for a single `abnormal` level.
#'
#' @param na_str (`string`)\cr the explicit `na_level` argument you used in the pre-processing steps (maybe with
#' [df_explicit_na()]). The default is `"<Missing>"`.
#'
#' @return
#' * `s_count_abnormal_by_baseline()` returns statistic `fraction` which is a named list with 3 labeled elements:
#' `not_abnormal`, `abnormal`, and `total`. Each element contains a vector with `num` and `denom` patient counts.
#'
#' @keywords internal
s_count_abnormal_by_baseline <- function(df,
.var,
abnormal,
na_str = "<Missing>",
variables = list(id = "USUBJID", baseline = "BNRIND")) {
checkmate::assert_string(.var)
checkmate::assert_string(abnormal)
checkmate::assert_string(na_str)
assert_df_with_variables(df, c(range = .var, variables))
checkmate::assert_subset(names(variables), c("id", "baseline"))
checkmate::assert_multi_class(df[[variables$id]], classes = c("factor", "character"))
checkmate::assert_multi_class(df[[variables$baseline]], classes = c("factor", "character"))
checkmate::assert_multi_class(df[[.var]], classes = c("factor", "character"))
# If input is passed as character, changed to factor
df[[.var]] <- as_factor_keep_attributes(df[[.var]], na_level = na_str)
df[[variables$baseline]] <- as_factor_keep_attributes(df[[variables$baseline]], na_level = na_str)
assert_valid_factor(df[[.var]], any.missing = FALSE)
assert_valid_factor(df[[variables$baseline]], any.missing = FALSE)
# Keep only records with valid analysis value.
df <- df[df[[.var]] != na_str, ]
anl <- data.frame(
id = df[[variables$id]],
var = df[[.var]],
baseline = df[[variables$baseline]],
stringsAsFactors = FALSE
)
# Total:
# - Patients in denominator: have at least one valid measurement post-baseline.
# - Patients in numerator: have at least one abnormality.
total_denom <- length(unique(anl$id))
total_num <- length(unique(anl$id[anl$var == abnormal]))
# Baseline NA records are counted only in total rows.
anl <- anl[anl$baseline != na_str, ]
# Abnormal:
# - Patients in denominator: have abnormality at baseline.
# - Patients in numerator: have abnormality at baseline AND
# have at least one abnormality post-baseline.
abn_denom <- length(unique(anl$id[anl$baseline == abnormal]))
abn_num <- length(unique(anl$id[anl$baseline == abnormal & anl$var == abnormal]))
# Not abnormal:
# - Patients in denominator: do not have abnormality at baseline.
# - Patients in numerator: do not have abnormality at baseline AND
# have at least one abnormality post-baseline.
not_abn_denom <- length(unique(anl$id[anl$baseline != abnormal]))
not_abn_num <- length(unique(anl$id[anl$baseline != abnormal & anl$var == abnormal]))
labels <- d_count_abnormal_by_baseline(abnormal)
list(fraction = list(
not_abnormal = formatters::with_label(c(num = not_abn_num, denom = not_abn_denom), labels$not_abnormal),
abnormal = formatters::with_label(c(num = abn_num, denom = abn_denom), labels$abnormal),
total = formatters::with_label(c(num = total_num, denom = total_denom), labels$total)
))
}
#' @describeIn abnormal_by_baseline Formatted analysis function which is used as `afun`
#' in `count_abnormal_by_baseline()`.
#'
#' @return
#' * `a_count_abnormal_by_baseline()` returns the corresponding list with formatted [rtables::CellValue()].
#'
#' @keywords internal
a_count_abnormal_by_baseline <- make_afun(
s_count_abnormal_by_baseline,
.formats = c(fraction = format_fraction)
)
#' @describeIn abnormal_by_baseline Layout-creating function which can take statistics function arguments
#' and additional format arguments. This function is a wrapper for [rtables::analyze()].
#'
#' @return
#' * `count_abnormal_by_baseline()` returns a layout object suitable for passing to further layouting functions,
#' or to [rtables::build_table()]. Adding this function to an `rtable` layout will add formatted rows containing
#' the statistics from `s_count_abnormal_by_baseline()` to the table layout.
#'
#' @examples
#' df <- data.frame(
#' USUBJID = as.character(c(1:6)),
#' ANRIND = factor(c(rep("LOW", 4), "NORMAL", "HIGH")),
#' BNRIND = factor(c("LOW", "NORMAL", "HIGH", NA, "LOW", "NORMAL"))
#' )
#' df <- df_explicit_na(df)
#'
#' # Layout creating function.
#' basic_table() %>%
#' count_abnormal_by_baseline(var = "ANRIND", abnormal = c(High = "HIGH")) %>%
#' build_table(df)
#'
#' # Passing of statistics function and formatting arguments.
#' df2 <- data.frame(
#' ID = as.character(c(1, 2, 3, 4)),
#' RANGE = factor(c("NORMAL", "LOW", "HIGH", "HIGH")),
#' BLRANGE = factor(c("LOW", "HIGH", "HIGH", "NORMAL"))
#' )
#'
#' basic_table() %>%
#' count_abnormal_by_baseline(
#' var = "RANGE",
#' abnormal = c(Low = "LOW"),
#' variables = list(id = "ID", baseline = "BLRANGE"),
#' .formats = c(fraction = "xx / xx"),
#' .indent_mods = c(fraction = 2L)
#' ) %>%
#' build_table(df2)
#'
#' @export
#' @order 2
count_abnormal_by_baseline <- function(lyt,
var,
abnormal,
variables = list(id = "USUBJID", baseline = "BNRIND"),
na_str = "<Missing>",
nested = TRUE,
...,
table_names = abnormal,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL) {
checkmate::assert_character(abnormal, len = length(table_names), names = "named")
checkmate::assert_string(var)
extra_args <- list(abnormal = abnormal, variables = variables, na_str = na_str, ...)
afun <- make_afun(
a_count_abnormal_by_baseline,
.stats = .stats,
.formats = .formats,
.labels = .labels,
.indent_mods = .indent_mods,
.ungroup_stats = "fraction"
)
for (i in seq_along(abnormal)) {
extra_args[["abnormal"]] <- abnormal[i]
lyt <- analyze(
lyt = lyt,
vars = var,
var_labels = names(abnormal[i]),
afun = afun,
na_str = na_str,
nested = nested,
table_names = table_names[i],
extra_args = extra_args,
show_labels = "visible"
)
}
lyt
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.