Nothing
#' Cumulative counts of numeric variable by thresholds
#'
#' @description `r lifecycle::badge("stable")`
#'
#' The analyze function [count_cumulative()] creates a layout element to calculate cumulative counts of values in a
#' numeric variable that are less than, less or equal to, greater than, or greater or equal to user-specified
#' threshold values.
#'
#' This function analyzes numeric variable `vars` against the threshold values supplied to the `thresholds`
#' argument as a numeric vector. Whether counts should include the threshold values, and whether to count
#' values lower or higher than the threshold values can be set via the `include_eq` and `lower_tail`
#' parameters, respectively.
#'
#' @inheritParams h_count_cumulative
#' @inheritParams argument_convention
#' @param thresholds (`numeric`)\cr vector of cutoff values for the counts.
#' @param .stats (`character`)\cr statistics to select for the table.
#'
#' Options are: ``r shQuote(get_stats("count_cumulative"), type = "sh")``
#'
#' @seealso Relevant helper function [h_count_cumulative()], and descriptive function [d_count_cumulative()].
#'
#' @name count_cumulative
#' @order 1
NULL
#' Helper function for `s_count_cumulative()`
#'
#' @description `r lifecycle::badge("stable")`
#'
#' Helper function to calculate count and fraction of `x` values in the lower or upper tail given a threshold.
#'
#' @inheritParams argument_convention
#' @param threshold (`numeric(1)`)\cr a cutoff value as threshold to count values of `x`.
#' @param lower_tail (`flag`)\cr whether to count lower tail, default is `TRUE`.
#' @param include_eq (`flag`)\cr whether to include value equal to the `threshold` in
#' count, default is `TRUE`.
#'
#' @return A named vector with items:
#' * `count`: the count of values less than, less or equal to, greater than, or greater or equal to a threshold
#' of user specification.
#' * `fraction`: the fraction of the count.
#'
#' @seealso [count_cumulative]
#'
#' @examples
#' set.seed(1, kind = "Mersenne-Twister")
#' x <- c(sample(1:10, 10), NA)
#' .N_col <- length(x)
#'
#' h_count_cumulative(x, 5, denom = .N_col)
#' h_count_cumulative(x, 5, lower_tail = FALSE, include_eq = FALSE, na_rm = FALSE, denom = .N_col)
#' h_count_cumulative(x, 0, lower_tail = FALSE, denom = .N_col)
#' h_count_cumulative(x, 100, lower_tail = FALSE, denom = .N_col)
#'
#' @export
h_count_cumulative <- function(x,
threshold,
lower_tail = TRUE,
include_eq = TRUE,
na_rm = TRUE,
denom) {
checkmate::assert_numeric(x)
checkmate::assert_numeric(threshold)
checkmate::assert_numeric(denom)
checkmate::assert_flag(lower_tail)
checkmate::assert_flag(include_eq)
checkmate::assert_flag(na_rm)
is_keep <- if (na_rm) !is.na(x) else rep(TRUE, length(x))
count <- if (lower_tail && include_eq) {
length(x[is_keep & x <= threshold])
} else if (lower_tail && !include_eq) {
length(x[is_keep & x < threshold])
} else if (!lower_tail && include_eq) {
length(x[is_keep & x >= threshold])
} else if (!lower_tail && !include_eq) {
length(x[is_keep & x > threshold])
}
result <- c(
count = count,
fraction = if (count == 0 && denom == 0) 0 else count / denom
)
result
}
#' Description of cumulative count
#'
#' @description `r lifecycle::badge("stable")`
#'
#' This is a helper function that describes the analysis in [s_count_cumulative()].
#'
#' @inheritParams h_count_cumulative
#'
#' @return Labels for [s_count_cumulative()].
#'
#' @export
d_count_cumulative <- function(threshold, lower_tail = TRUE, include_eq = TRUE) {
checkmate::assert_numeric(threshold)
lg <- if (lower_tail) "<" else ">"
eq <- if (include_eq) "=" else ""
paste0(lg, eq, " ", threshold)
}
#' @describeIn count_cumulative Statistics function that produces a named list given a numeric vector of thresholds.
#'
#' @return
#' * `s_count_cumulative()` returns a named list of `count_fraction`s: a list with each `thresholds` value as a
#' component, each component containing a vector for the count and fraction.
#'
#' @keywords internal
s_count_cumulative <- function(x,
thresholds,
lower_tail = TRUE,
include_eq = TRUE,
denom = c("N_col", "n", "N_row"),
.N_col, # nolint
.N_row, # nolint
na_rm = TRUE,
...) {
checkmate::assert_numeric(thresholds, min.len = 1, any.missing = FALSE)
denom <- match.arg(denom) %>%
switch(
n = length(x),
N_row = .N_row,
N_col = .N_col
)
count_fraction_list <- Map(function(thres) {
result <- h_count_cumulative(x, thres, lower_tail, include_eq, na_rm = na_rm, denom = denom)
label <- d_count_cumulative(thres, lower_tail, include_eq)
formatters::with_label(result, label)
}, thresholds)
names(count_fraction_list) <- thresholds
list(count_fraction = count_fraction_list)
}
#' @describeIn count_cumulative Formatted analysis function which is used as `afun`
#' in `count_cumulative()`.
#'
#' @return
#' * `a_count_cumulative()` returns the corresponding list with formatted [rtables::CellValue()].
#'
#' @keywords internal
a_count_cumulative <- function(x,
...,
.stats = NULL,
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL) {
dots_extra_args <- list(...)
# Check if there are user-defined functions
default_and_custom_stats_list <- .split_std_from_custom_stats(.stats)
.stats <- default_and_custom_stats_list$all_stats
custom_stat_functions <- default_and_custom_stats_list$custom_stats
# Adding automatically extra parameters to the statistic function (see ?rtables::additional_fun_params)
extra_afun_params <- retrieve_extra_afun_params(
names(dots_extra_args$.additional_fun_parameters)
)
dots_extra_args$.additional_fun_parameters <- NULL # After extraction we do not need them anymore
# Main statistical functions application
x_stats <- .apply_stat_functions(
default_stat_fnc = s_count_cumulative,
custom_stat_fnc_list = custom_stat_functions,
args_list = c(
x = list(x),
extra_afun_params,
dots_extra_args
)
)
# Fill in with stats defaults if needed
.stats <- get_stats("count_cumulative",
stats_in = .stats,
custom_stats_in = names(custom_stat_functions)
)
x_stats <- x_stats[.stats]
levels_per_stats <- lapply(x_stats, names)
# Fill in formats/indents/labels with custom input and defaults
.formats <- get_formats_from_stats(.stats, .formats, levels_per_stats)
.indent_mods <- get_indents_from_stats(.stats, .indent_mods, levels_per_stats)
.labels <- get_labels_from_stats(
.stats, .labels, levels_per_stats,
label_attr_from_stats = sapply(.unlist_keep_nulls(x_stats), attr, "label")
)
# Unlist stats
x_stats <- x_stats %>%
.unlist_keep_nulls() %>%
setNames(names(.formats))
# Auto format handling
.formats <- apply_auto_formatting(
.formats,
x_stats,
extra_afun_params$.df_row,
extra_afun_params$.var
)
# Get and check statistical names from defaults
.stat_names <- get_stat_names(x_stats, .stat_names) # note is x_stats
in_rows(
.list = x_stats,
.formats = .formats,
.names = names(.labels),
.stat_names = .stat_names,
.labels = .labels %>% .unlist_keep_nulls(),
.indent_mods = .indent_mods %>% .unlist_keep_nulls()
)
}
#' @describeIn count_cumulative Layout-creating function which can take statistics function arguments
#' and additional format arguments. This function is a wrapper for [rtables::analyze()].
#'
#' @return
#' * `count_cumulative()` returns a layout object suitable for passing to further layouting functions,
#' or to [rtables::build_table()]. Adding this function to an `rtable` layout will add formatted rows containing
#' the statistics from `s_count_cumulative()` to the table layout.
#'
#' @examples
#' basic_table() %>%
#' split_cols_by("ARM") %>%
#' add_colcounts() %>%
#' count_cumulative(
#' vars = "AGE",
#' thresholds = c(40, 60)
#' ) %>%
#' build_table(tern_ex_adsl)
#'
#' @export
#' @order 2
count_cumulative <- function(lyt,
vars,
thresholds,
lower_tail = TRUE,
include_eq = TRUE,
var_labels = vars,
show_labels = "visible",
na_str = default_na_str(),
nested = TRUE,
table_names = vars,
...,
na_rm = TRUE,
.stats = c("count_fraction"),
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL) {
# Depending on main functions
extra_args <- list(
"na_rm" = na_rm,
"thresholds" = thresholds,
"lower_tail" = lower_tail,
"include_eq" = include_eq,
...
)
# Needed defaults
if (!is.null(.stats)) extra_args[[".stats"]] <- .stats
if (!is.null(.stat_names)) extra_args[[".stat_names"]] <- .stat_names
if (!is.null(.formats)) extra_args[[".formats"]] <- .formats
if (!is.null(.labels)) extra_args[[".labels"]] <- .labels
if (!is.null(.indent_mods)) extra_args[[".indent_mods"]] <- .indent_mods
# Adding all additional information from layout to analysis functions (see ?rtables::additional_fun_params)
extra_args[[".additional_fun_parameters"]] <- get_additional_afun_params(add_alt_df = FALSE)
formals(a_count_cumulative) <- c(
formals(a_count_cumulative),
extra_args[[".additional_fun_parameters"]]
)
# Main {rtables} structural call
analyze(
lyt,
vars,
afun = a_count_cumulative,
na_str = na_str,
inclNAs = !na_rm,
table_names = table_names,
var_labels = var_labels,
show_labels = show_labels,
nested = nested,
extra_args = extra_args
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.