Nothing
#' Count the number of patients with particular flags
#'
#' @description `r lifecycle::badge("stable")`
#'
#' The analyze function [count_patients_with_flags()] creates a layout element to calculate counts of patients for
#' which user-specified flags are present.
#'
#' This function analyzes primary analysis variable `var` which indicates unique subject identifiers. Flags
#' variables to analyze are specified by the user via the `flag_variables` argument, and must either take value
#' `TRUE` (flag present) or `FALSE` (flag absent) for each record.
#'
#' If there are multiple records with the same flag present for a patient, only one occurrence is counted.
#'
#' @inheritParams argument_convention
#' @param flag_variables (`character`)\cr a vector specifying the names of `logical` variables from analysis dataset
#' used for counting the number of unique identifiers.
#' @param flag_labels (`character`)\cr vector of labels to use for flag variables.
#' @param .stats (`character`)\cr statistics to select for the table. Run `get_stats("count_patients_with_flags")`
#' to see available statistics for this function.
#'
#' @seealso [count_patients_with_event]
#'
#' @name count_patients_with_flags
#' @order 1
NULL
#' @describeIn count_patients_with_flags Statistics function which counts the number of patients for which
#' a particular flag variable is `TRUE`.
#'
#' @inheritParams analyze_variables
#' @param .var (`string`)\cr name of the column that contains the unique identifier.
#'
#' @note If `flag_labels` is not specified, variables labels will be extracted from `df`. If variables are not
#' labeled, variable names will be used instead. Alternatively, a named `vector` can be supplied to
#' `flag_variables` such that within each name-value pair the name corresponds to the variable name and the value is
#' the label to use for this variable.
#'
#' @return
#' * `s_count_patients_with_flags()` returns the count and the fraction of unique identifiers with each particular
#' flag as a list of statistics `n`, `count`, `count_fraction`, and `n_blq`, with one element per flag.
#'
#' @examples
#' # `s_count_patients_with_flags()`
#'
#' s_count_patients_with_flags(
#' adae,
#' "SUBJID",
#' flag_variables = c("fl1", "fl2", "fl3", "fl4"),
#' denom = "N_col",
#' .N_col = 1000
#' )
#'
#' @export
s_count_patients_with_flags <- function(df,
.var,
flag_variables,
flag_labels = NULL,
.N_col, # nolint
.N_row, # nolint
denom = c("n", "N_row", "N_col")) {
checkmate::assert_character(flag_variables)
if (!is.null(flag_labels)) {
checkmate::assert_character(flag_labels, len = length(flag_variables), any.missing = FALSE)
flag_names <- flag_labels
} else {
if (is.null(names(flag_variables))) {
flag_names <- formatters::var_labels(df[flag_variables], fill = TRUE)
} else {
flag_names <- unname(flag_variables)
flag_variables <- names(flag_variables)
}
}
checkmate::assert_subset(flag_variables, colnames(df))
temp <- sapply(flag_variables, function(x) {
tmp <- Map(function(y) which(df[[y]]), x)
position_satisfy_flags <- Reduce(intersect, tmp)
id_satisfy_flags <- as.character(unique(df[position_satisfy_flags, ][[.var]]))
s_count_values(
as.character(unique(df[[.var]])),
id_satisfy_flags,
denom = denom,
.N_col = .N_col,
.N_row = .N_row
)
})
colnames(temp) <- flag_names
temp <- data.frame(t(temp))
result <- temp %>% as.list()
if (length(flag_variables) == 1) {
for (i in 1:3) names(result[[i]]) <- flag_names[1]
}
result
}
#' @describeIn count_patients_with_flags Formatted analysis function which is used as `afun`
#' in `count_patients_with_flags()`.
#'
#' @return
#' * `a_count_patients_with_flags()` returns the corresponding list with formatted [rtables::CellValue()].
#'
#' @examples
#' # We need to ungroup `count_fraction` first so that the `rtables` formatting
#' # function `format_count_fraction()` can be applied correctly.
#'
#' # `a_count_patients_with_flags()`
#'
#' afun <- make_afun(a_count_patients_with_flags,
#' .stats = "count_fraction",
#' .ungroup_stats = "count_fraction"
#' )
#' afun(
#' adae,
#' .N_col = 10L,
#' .N_row = 10L,
#' .var = "USUBJID",
#' flag_variables = c("fl1", "fl2", "fl3", "fl4")
#' )
#'
#' @export
a_count_patients_with_flags <- make_afun(
s_count_patients_with_flags,
.formats = c("count_fraction" = format_count_fraction_fixed_dp)
)
#' @describeIn count_patients_with_flags Layout-creating function which can take statistics function
#' arguments and additional format arguments. This function is a wrapper for [rtables::analyze()].
#'
#' @return
#' * `count_patients_with_flags()` returns a layout object suitable for passing to further layouting functions,
#' or to [rtables::build_table()]. Adding this function to an `rtable` layout will add formatted rows containing
#' the statistics from `s_count_patients_with_flags()` to the table layout.
#'
#' @examples
#' library(dplyr)
#'
#' # Add labelled flag variables to analysis dataset.
#' adae <- tern_ex_adae %>%
#' mutate(
#' fl1 = TRUE %>% with_label("Total AEs"),
#' fl2 = (TRTEMFL == "Y") %>%
#' with_label("Total number of patients with at least one adverse event"),
#' fl3 = (TRTEMFL == "Y" & AEOUT == "FATAL") %>%
#' with_label("Total number of patients with fatal AEs"),
#' fl4 = (TRTEMFL == "Y" & AEOUT == "FATAL" & AEREL == "Y") %>%
#' with_label("Total number of patients with related fatal AEs")
#' )
#'
#' # `count_patients_with_flags()`
#'
#' lyt2 <- basic_table() %>%
#' split_cols_by("ARM") %>%
#' add_colcounts() %>%
#' count_patients_with_flags(
#' "SUBJID",
#' flag_variables = c("fl1", "fl2", "fl3", "fl4"),
#' denom = "N_col"
#' )
#'
#' build_table(lyt2, adae, alt_counts_df = tern_ex_adsl)
#'
#' @export
#' @order 2
count_patients_with_flags <- function(lyt,
var,
flag_variables,
flag_labels = NULL,
var_labels = var,
show_labels = "hidden",
riskdiff = FALSE,
na_str = default_na_str(),
nested = TRUE,
...,
table_names = paste0("tbl_flags_", var),
.stats = "count_fraction",
.formats = NULL,
.indent_mods = NULL) {
checkmate::assert_flag(riskdiff)
s_args <- list(flag_variables = flag_variables, flag_labels = flag_labels, ...)
afun <- make_afun(
a_count_patients_with_flags,
.stats = .stats,
.formats = .formats,
.indent_mods = .indent_mods,
.ungroup_stats = .stats
)
extra_args <- if (isFALSE(riskdiff)) {
s_args
} else {
list(
afun = list("s_count_patients_with_flags" = afun),
.stats = .stats,
.indent_mods = .indent_mods,
s_args = s_args
)
}
lyt <- analyze(
lyt = lyt,
vars = var,
var_labels = var_labels,
show_labels = show_labels,
afun = ifelse(isFALSE(riskdiff), afun, afun_riskdiff),
table_names = table_names,
na_str = na_str,
nested = nested,
extra_args = extra_args
)
lyt
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.