Nothing
#' Count number of patients and sum exposure across all patients in columns
#'
#' @description `r lifecycle::badge("stable")`
#'
#' The analyze function [analyze_patients_exposure_in_cols()] creates a layout element to count total numbers of
#' patients and sum an analysis value (i.e. exposure) across all patients in columns.
#'
#' The primary analysis variable `ex_var` is the exposure variable used to calculate the `sum_exposure` statistic. The
#' `id` variable is used to uniquely identify patients in the data such that only unique patients are counted in the
#' `n_patients` statistic, and the `var` variable is used to create a row split if needed. The percentage returned as
#' part of the `n_patients` statistic is the proportion of all records that correspond to a unique patient.
#'
#' The summarize function [summarize_patients_exposure_in_cols()] performs the same function as
#' [analyze_patients_exposure_in_cols()] except it creates content rows, not data rows, to summarize the current table
#' row/column context and operates on the level of the latest row split or the root of the table if no row splits have
#' occurred.
#'
#' If a column split has not yet been performed in the table, `col_split` must be set to `TRUE` for the first call of
#' [analyze_patients_exposure_in_cols()] or [summarize_patients_exposure_in_cols()].
#'
#' @inheritParams argument_convention
#' @param ex_var (`string`)\cr name of the variable in `df` containing exposure values.
#' @param custom_label (`string` or `NULL`)\cr if provided and `labelstr` is empty, this will be used as label.
#' @param .stats (`character`)\cr statistics to select for the table. Run
#' `get_stats("analyze_patients_exposure_in_cols")` to see available statistics for this function.
#'
#' @name summarize_patients_exposure_in_cols
#' @order 1
NULL
#' @describeIn summarize_patients_exposure_in_cols Statistics function which counts numbers
#' of patients and the sum of exposure across all patients.
#'
#' @return
#' * `s_count_patients_sum_exposure()` returns a named `list` with the statistics:
#' * `n_patients`: Number of unique patients in `df`.
#' * `sum_exposure`: Sum of `ex_var` across all patients in `df`.
#'
#' @keywords internal
s_count_patients_sum_exposure <- function(df,
ex_var = "AVAL",
id = "USUBJID",
labelstr = "",
.stats = c("n_patients", "sum_exposure"),
.N_col, # nolint
custom_label = NULL) {
assert_df_with_variables(df, list(ex_var = ex_var, id = id))
checkmate::assert_string(id)
checkmate::assert_string(labelstr)
checkmate::assert_string(custom_label, null.ok = TRUE)
checkmate::assert_numeric(df[[ex_var]])
checkmate::assert_true(all(.stats %in% c("n_patients", "sum_exposure")))
row_label <- if (labelstr != "") {
labelstr
} else if (!is.null(custom_label)) {
custom_label
} else {
"Total patients numbers/person time"
}
y <- list()
if ("n_patients" %in% .stats) {
y$n_patients <-
formatters::with_label(
s_num_patients_content(
df = df,
.N_col = .N_col, # nolint
.var = id,
labelstr = ""
)$unique,
row_label
)
}
if ("sum_exposure" %in% .stats) {
y$sum_exposure <- formatters::with_label(sum(df[[ex_var]]), row_label)
}
y
}
#' @describeIn summarize_patients_exposure_in_cols Analysis function which is used as `afun` in
#' [rtables::analyze_colvars()] within `analyze_patients_exposure_in_cols()` and as `cfun` in
#' [rtables::summarize_row_groups()] within `summarize_patients_exposure_in_cols()`.
#'
#' @return
#' * `a_count_patients_sum_exposure()` returns formatted [rtables::CellValue()].
#'
#' @examples
#' a_count_patients_sum_exposure(
#' df = df,
#' var = "SEX",
#' .N_col = nrow(df),
#' .stats = "n_patients"
#' )
#'
#' @export
a_count_patients_sum_exposure <- function(df,
var = NULL,
ex_var = "AVAL",
id = "USUBJID",
add_total_level = FALSE,
custom_label = NULL,
labelstr = "",
.N_col, # nolint
.stats,
.formats = list(n_patients = "xx (xx.x%)", sum_exposure = "xx")) {
checkmate::assert_flag(add_total_level)
if (!is.null(var)) {
assert_df_with_variables(df, list(var = var))
df[[var]] <- as.factor(df[[var]])
}
y <- list()
if (is.null(var)) {
y[[.stats]] <- list(Total = s_count_patients_sum_exposure(
df = df,
ex_var = ex_var,
id = id,
labelstr = labelstr,
.N_col = .N_col,
.stats = .stats,
custom_label = custom_label
)[[.stats]])
} else {
for (lvl in levels(df[[var]])) {
y[[.stats]][[lvl]] <- s_count_patients_sum_exposure(
df = subset(df, get(var) == lvl),
ex_var = ex_var,
id = id,
labelstr = labelstr,
.N_col = .N_col,
.stats = .stats,
custom_label = lvl
)[[.stats]]
}
if (add_total_level) {
y[[.stats]][["Total"]] <- s_count_patients_sum_exposure(
df = df,
ex_var = ex_var,
id = id,
labelstr = labelstr,
.N_col = .N_col,
.stats = .stats,
custom_label = custom_label
)[[.stats]]
}
}
in_rows(.list = y[[.stats]], .formats = .formats[[.stats]])
}
#' @describeIn summarize_patients_exposure_in_cols Layout-creating function which can take statistics
#' function arguments and additional format arguments. This function is a wrapper for
#' [rtables::split_cols_by_multivar()] and [rtables::summarize_row_groups()].
#'
#' @return
#' * `summarize_patients_exposure_in_cols()` returns a layout object suitable for passing to further
#' layouting functions, or to [rtables::build_table()]. Adding this function to an `rtable` layout will
#' add formatted content rows, with the statistics from `s_count_patients_sum_exposure()` arranged in
#' columns, to the table layout.
#'
#' @examples
#' lyt5 <- basic_table() %>%
#' summarize_patients_exposure_in_cols(var = "AVAL", col_split = TRUE)
#'
#' result5 <- build_table(lyt5, df = df, alt_counts_df = adsl)
#' result5
#'
#' lyt6 <- basic_table() %>%
#' summarize_patients_exposure_in_cols(var = "AVAL", col_split = TRUE, .stats = "sum_exposure")
#'
#' result6 <- build_table(lyt6, df = df, alt_counts_df = adsl)
#' result6
#'
#' @export
#' @order 3
summarize_patients_exposure_in_cols <- function(lyt, # nolint
var,
ex_var = "AVAL",
id = "USUBJID",
add_total_level = FALSE,
custom_label = NULL,
col_split = TRUE,
na_str = default_na_str(),
...,
.stats = c("n_patients", "sum_exposure"),
.labels = c(n_patients = "Patients", sum_exposure = "Person time"),
.indent_mods = NULL) {
extra_args <- list(ex_var = ex_var, id = id, add_total_level = add_total_level, custom_label = custom_label, ...)
if (col_split) {
lyt <- split_cols_by_multivar(
lyt = lyt,
vars = rep(var, length(.stats)),
varlabels = .labels[.stats],
extra_args = list(.stats = .stats)
)
}
summarize_row_groups(
lyt = lyt,
var = var,
cfun = a_count_patients_sum_exposure,
na_str = na_str,
extra_args = extra_args
)
}
#' @describeIn summarize_patients_exposure_in_cols Layout-creating function which can take statistics
#' function arguments and additional format arguments. This function is a wrapper for
#' [rtables::split_cols_by_multivar()] and [rtables::analyze_colvars()].
#'
#' @param col_split (`flag`)\cr whether the columns should be split. Set to `FALSE` when the required
#' column split has been done already earlier in the layout pipe.
#'
#' @return
#' * `analyze_patients_exposure_in_cols()` returns a layout object suitable for passing to further
#' layouting functions, or to [rtables::build_table()]. Adding this function to an `rtable` layout will
#' add formatted data rows, with the statistics from `s_count_patients_sum_exposure()` arranged in
#' columns, to the table layout.
#'
#' @note As opposed to [summarize_patients_exposure_in_cols()] which generates content rows,
#' `analyze_patients_exposure_in_cols()` generates data rows which will _not_ be repeated on multiple
#' pages when pagination is used.
#'
#' @examples
#' set.seed(1)
#' df <- data.frame(
#' USUBJID = c(paste("id", seq(1, 12), sep = "")),
#' ARMCD = c(rep("ARM A", 6), rep("ARM B", 6)),
#' SEX = c(rep("Female", 6), rep("Male", 6)),
#' AVAL = as.numeric(sample(seq(1, 20), 12)),
#' stringsAsFactors = TRUE
#' )
#' adsl <- data.frame(
#' USUBJID = c(paste("id", seq(1, 12), sep = "")),
#' ARMCD = c(rep("ARM A", 2), rep("ARM B", 2)),
#' SEX = c(rep("Female", 2), rep("Male", 2)),
#' stringsAsFactors = TRUE
#' )
#'
#' lyt <- basic_table() %>%
#' split_cols_by("ARMCD", split_fun = add_overall_level("Total", first = FALSE)) %>%
#' summarize_patients_exposure_in_cols(var = "AVAL", col_split = TRUE) %>%
#' analyze_patients_exposure_in_cols(var = "SEX", col_split = FALSE)
#' result <- build_table(lyt, df = df, alt_counts_df = adsl)
#' result
#'
#' lyt2 <- basic_table() %>%
#' split_cols_by("ARMCD", split_fun = add_overall_level("Total", first = FALSE)) %>%
#' summarize_patients_exposure_in_cols(
#' var = "AVAL", col_split = TRUE,
#' .stats = "n_patients", custom_label = "some custom label"
#' ) %>%
#' analyze_patients_exposure_in_cols(var = "SEX", col_split = FALSE, ex_var = "AVAL")
#' result2 <- build_table(lyt2, df = df, alt_counts_df = adsl)
#' result2
#'
#' lyt3 <- basic_table() %>%
#' analyze_patients_exposure_in_cols(var = "SEX", col_split = TRUE, ex_var = "AVAL")
#' result3 <- build_table(lyt3, df = df, alt_counts_df = adsl)
#' result3
#'
#' # Adding total levels and custom label
#' lyt4 <- basic_table(
#' show_colcounts = TRUE
#' ) %>%
#' analyze_patients_exposure_in_cols(
#' var = "ARMCD",
#' col_split = TRUE,
#' add_total_level = TRUE,
#' custom_label = "TOTAL"
#' ) %>%
#' append_topleft(c("", "Sex"))
#'
#' result4 <- build_table(lyt4, df = df, alt_counts_df = adsl)
#' result4
#'
#' @export
#' @order 2
analyze_patients_exposure_in_cols <- function(lyt, # nolint
var = NULL,
ex_var = "AVAL",
id = "USUBJID",
add_total_level = FALSE,
custom_label = NULL,
col_split = TRUE,
na_str = default_na_str(),
.stats = c("n_patients", "sum_exposure"),
.labels = c(n_patients = "Patients", sum_exposure = "Person time"),
.indent_mods = 0L,
...) {
extra_args <- list(
var = var, ex_var = ex_var, id = id, add_total_level = add_total_level, custom_label = custom_label, ...
)
if (col_split) {
lyt <- split_cols_by_multivar(
lyt = lyt,
vars = rep(ex_var, length(.stats)),
varlabels = .labels[.stats],
extra_args = list(.stats = .stats)
)
}
lyt <- lyt %>% analyze_colvars(
afun = a_count_patients_sum_exposure,
indent_mod = .indent_mods,
na_str = na_str,
extra_args = extra_args
)
lyt
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.