Nothing
#' Analyze a pairwise Cox-PH model
#'
#' @description `r lifecycle::badge("stable")`
#'
#' The analyze function [coxph_pairwise()] creates a layout element to analyze a pairwise Cox-PH model.
#'
#' This function can return statistics including p-value, hazard ratio (HR), and HR confidence intervals from both
#' stratified and unstratified Cox-PH models. The variable(s) to be analyzed is specified via the `vars` argument and
#' any stratification factors via the `strata` argument.
#'
#' @inheritParams argument_convention
#' @inheritParams s_surv_time
#' @param strata (`character` or `NULL`)\cr variable names indicating stratification factors.
#' @param strat `r lifecycle::badge("deprecated")` Please use the `strata` argument instead.
#' @param control (`list`)\cr parameters for comparison details, specified by using the helper function
#' [control_coxph()]. Some possible parameter options are:
#' * `pval_method` (`string`)\cr p-value method for testing the null hypothesis that hazard ratio = 1. Default
#' method is `"log-rank"` which comes from [survival::survdiff()], can also be set to `"wald"` or `"likelihood"`
#' (from [survival::coxph()]).
#' * `ties` (`string`)\cr specifying the method for tie handling. Default is `"efron"`,
#' can also be set to `"breslow"` or `"exact"`. See more in [survival::coxph()].
#' * `conf_level` (`proportion`)\cr confidence level of the interval for HR.
#' @param .stats (`character`)\cr statistics to select for the table.
#'
#' Options are: ``r shQuote(get_stats("coxph_pairwise"), type = "sh")``
#'
#' @name survival_coxph_pairwise
#' @order 1
NULL
#' @describeIn survival_coxph_pairwise Statistics function which analyzes HR, CIs of HR, and p-value of a Cox-PH model.
#'
#' @return
#' * `s_coxph_pairwise()` returns the statistics:
#' * `pvalue`: p-value to test the null hypothesis that hazard ratio = 1.
#' * `hr`: Hazard ratio.
#' * `hr_ci`: Confidence interval for hazard ratio.
#' * `n_tot`: Total number of observations.
#' * `n_tot_events`: Total number of events.
#'
#' @keywords internal
s_coxph_pairwise <- function(df,
.ref_group,
.in_ref_col,
.var,
is_event,
strata = NULL,
strat = lifecycle::deprecated(),
control = control_coxph(),
...) {
if (lifecycle::is_present(strat)) {
lifecycle::deprecate_warn("0.9.4", "s_coxph_pairwise(strat)", "s_coxph_pairwise(strata)")
strata <- strat
}
checkmate::assert_string(.var)
checkmate::assert_numeric(df[[.var]])
checkmate::assert_logical(df[[is_event]])
assert_df_with_variables(df, list(tte = .var, is_event = is_event))
pval_method <- control$pval_method
ties <- control$ties
conf_level <- control$conf_level
if (.in_ref_col) {
return(
list(
pvalue = formatters::with_label(numeric(), paste0("p-value (", pval_method, ")")),
hr = formatters::with_label(numeric(), "Hazard Ratio"),
hr_ci = formatters::with_label(numeric(), f_conf_level(conf_level)),
hr_ci_3d = formatters::with_label(numeric(), paste0("Hazard Ratio (", f_conf_level(conf_level), ")")),
n_tot = formatters::with_label(numeric(), "Total n"),
n_tot_events = formatters::with_label(numeric(), "Total events")
)
)
}
data <- rbind(.ref_group, df)
group <- factor(rep(c("ref", "x"), c(nrow(.ref_group), nrow(df))), levels = c("ref", "x"))
df_cox <- data.frame(
tte = data[[.var]],
is_event = data[[is_event]],
arm = group
)
if (is.null(strata)) {
formula_cox <- survival::Surv(tte, is_event) ~ arm
} else {
formula_cox <- stats::as.formula(
paste0(
"survival::Surv(tte, is_event) ~ arm + strata(",
paste(strata, collapse = ","),
")"
)
)
df_cox <- cbind(df_cox, data[strata])
}
cox_fit <- survival::coxph(
formula = formula_cox,
data = df_cox,
ties = ties
)
sum_cox <- summary(cox_fit, conf.int = conf_level, extend = TRUE)
orginal_survdiff <- survival::survdiff(
formula_cox,
data = df_cox
)
log_rank_pvalue <- 1 - pchisq(orginal_survdiff$chisq, length(orginal_survdiff$n) - 1)
pval <- switch(pval_method,
"wald" = sum_cox$waldtest["pvalue"],
"log-rank" = log_rank_pvalue, # pvalue from original log-rank test survival::survdiff()
"likelihood" = sum_cox$logtest["pvalue"]
)
list(
pvalue = formatters::with_label(unname(pval), paste0("p-value (", pval_method, ")")),
hr = formatters::with_label(sum_cox$conf.int[1, 1], "Hazard Ratio"),
hr_ci = formatters::with_label(unname(sum_cox$conf.int[1, 3:4]), f_conf_level(conf_level)),
hr_ci_3d = formatters::with_label(
c(sum_cox$conf.int[1, 1], unname(sum_cox$conf.int[1, 3:4])),
paste0("Hazard Ratio (", f_conf_level(conf_level), ")")
),
n_tot = formatters::with_label(sum_cox$n, "Total n"),
n_tot_events = formatters::with_label(sum_cox$nevent, "Total events")
)
}
#' @describeIn survival_coxph_pairwise Formatted analysis function which is used as `afun` in `coxph_pairwise()`.
#'
#' @return
#' * `a_coxph_pairwise()` returns the corresponding list with formatted [rtables::CellValue()].
#'
#' @keywords internal
a_coxph_pairwise <- function(df,
...,
.stats = NULL,
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL) {
# Check for additional parameters to the statistics function
dots_extra_args <- list(...)
extra_afun_params <- retrieve_extra_afun_params(names(dots_extra_args$.additional_fun_parameters))
dots_extra_args$.additional_fun_parameters <- NULL
# Check for user-defined functions
default_and_custom_stats_list <- .split_std_from_custom_stats(.stats)
.stats <- default_and_custom_stats_list$all_stats
custom_stat_functions <- default_and_custom_stats_list$custom_stats
# Apply statistics function
x_stats <- .apply_stat_functions(
default_stat_fnc = s_coxph_pairwise,
custom_stat_fnc_list = custom_stat_functions,
args_list = c(
df = list(df),
extra_afun_params,
dots_extra_args
)
)
# Fill in formatting defaults
.stats <- get_stats("coxph_pairwise",
stats_in = .stats,
custom_stats_in = names(custom_stat_functions)
)
x_stats <- x_stats[.stats]
.formats <- get_formats_from_stats(.stats, .formats)
.labels <- get_labels_from_stats(
.stats, .labels,
tern_defaults = c(lapply(x_stats, attr, "label"), tern_default_labels)
)
.indent_mods <- get_indents_from_stats(.stats, .indent_mods)
# Auto format handling
.formats <- apply_auto_formatting(.formats, x_stats, extra_afun_params$.df_row, extra_afun_params$.var)
# Get and check statistical names
.stat_names <- get_stat_names(x_stats, .stat_names)
in_rows(
.list = x_stats,
.formats = .formats,
.names = .labels %>% .unlist_keep_nulls(),
.stat_names = .stat_names,
.labels = .labels %>% .unlist_keep_nulls(),
.indent_mods = .indent_mods %>% .unlist_keep_nulls()
)
}
#' @describeIn survival_coxph_pairwise Layout-creating function which can take statistics function arguments
#' and additional format arguments. This function is a wrapper for [rtables::analyze()].
#'
#' @return
#' * `coxph_pairwise()` returns a layout object suitable for passing to further layouting functions,
#' or to [rtables::build_table()]. Adding this function to an `rtable` layout will add formatted rows containing
#' the statistics from `s_coxph_pairwise()` to the table layout.
#'
#' @examples
#' library(dplyr)
#'
#' adtte_f <- tern_ex_adtte %>%
#' filter(PARAMCD == "OS") %>%
#' mutate(is_event = CNSR == 0)
#'
#' df <- adtte_f %>% filter(ARMCD == "ARM A")
#' df_ref_group <- adtte_f %>% filter(ARMCD == "ARM B")
#'
#' basic_table() %>%
#' split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
#' add_colcounts() %>%
#' coxph_pairwise(
#' vars = "AVAL",
#' is_event = "is_event",
#' var_labels = "Unstratified Analysis"
#' ) %>%
#' build_table(df = adtte_f)
#'
#' basic_table() %>%
#' split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
#' add_colcounts() %>%
#' coxph_pairwise(
#' vars = "AVAL",
#' is_event = "is_event",
#' var_labels = "Stratified Analysis",
#' strata = "SEX",
#' control = control_coxph(pval_method = "wald")
#' ) %>%
#' build_table(df = adtte_f)
#'
#' @export
#' @order 2
coxph_pairwise <- function(lyt,
vars,
strata = NULL,
control = control_coxph(),
na_str = default_na_str(),
nested = TRUE,
...,
var_labels = "CoxPH",
show_labels = "visible",
table_names = vars,
.stats = c("pvalue", "hr", "hr_ci"),
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL) {
# Process standard extra arguments
extra_args <- list(".stats" = .stats)
if (!is.null(.stat_names)) extra_args[[".stat_names"]] <- .stat_names
if (!is.null(.formats)) extra_args[[".formats"]] <- .formats
if (!is.null(.labels)) extra_args[[".labels"]] <- .labels
if (!is.null(.indent_mods)) extra_args[[".indent_mods"]] <- .indent_mods
# Process additional arguments to the statistic function
extra_args <- c(
extra_args,
strata = list(strata), control = list(control),
...
)
# Append additional info from layout to the analysis function
extra_args[[".additional_fun_parameters"]] <- get_additional_afun_params(add_alt_df = FALSE)
formals(a_coxph_pairwise) <- c(formals(a_coxph_pairwise), extra_args[[".additional_fun_parameters"]])
analyze(
lyt = lyt,
vars = vars,
afun = a_coxph_pairwise,
na_str = na_str,
nested = nested,
extra_args = extra_args,
var_labels = var_labels,
show_labels = show_labels,
table_names = table_names
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.